Spinal neuropeptide modulation, functional assessment and cartilage lesions in a monosodium iodoacetate rat model of osteoarthritis

Neuropeptides ◽  
2017 ◽  
Vol 65 ◽  
pp. 56-62 ◽  
Author(s):  
Colombe Otis ◽  
Martin Guillot ◽  
Maxim Moreau ◽  
Johanne Martel-Pelletier ◽  
Jean-Pierre Pelletier ◽  
...  
PLoS ONE ◽  
2018 ◽  
Vol 13 (4) ◽  
pp. e0196625 ◽  
Author(s):  
Ikufumi Takahashi ◽  
Taro Matsuzaki ◽  
Hiroshi Kuroki ◽  
Masahiro Hoso

2019 ◽  
Vol 139 (6) ◽  
pp. 819-841 ◽  
Author(s):  
Julian Mehl ◽  
Alexander Otto ◽  
Joshua B. Baldino ◽  
Andrea Achtnich ◽  
Ralph Akoto ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu Chen ◽  
Jiuheng Lv ◽  
Yejuan Jia ◽  
Ruiqing Wang ◽  
Zidi Zhang ◽  
...  

In this study, a knee osteoarthritis (KOA) rat model induced by monosodium iodoacetate (MIA) was used to study the effect of moxibustion on improving knee cartilage damage and its effect on the intestinal flora. The experimental rats were divided into the normal group (N), model group (M), moxibustion treatment group (MS), and diclofenac sodium treatment group (DS). After 4 weeks, cartilage pathological damage in the knee joint was evaluated using hematoxylin-eosin and safranin O-fast green staining analysis. ELISAs and Western blots were used to detect the expression levels of IL-1β and TNF-α in the serum and cartilage, respectively. The total DNA of the fecal samples was extracted and subjected to high-throughput sequencing of the V3-V4 region of the 16S rRNA gene to analyze the changes in the intestinal flora. In the model group, the cartilage was obviously damaged, the expression levels of IL-1β and TNF-α in the serum and cartilage were increased, and the abundance and diversity of the intestinal flora were decreased. Moxibustion treatment significantly improved the cartilage damage and reduced the concentration of inflammatory factors in the serum and cartilage. The high-throughput sequencing results showed that compared to the model group, the moxibustion treatment regulated some specific species in the intestinal microorganisms rather than the α diversity. In conclusion, our findings suggest that moxibustion treatment may work through two aspects in rats. On one hand, it directly acts on knee cartilage to promote repair, and on the other hand, it regulates the composition of the intestinal flora and reduces the production of inflammatory factors.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5467
Author(s):  
Hae Lim Kim ◽  
Hae Jin Lee ◽  
Dong-Ryung Lee ◽  
Bong-Keun Choi ◽  
Seung Hwan Yang

The aim of this study was to determine the anti-osteoarthritic effects of LI73014F2, which consists of Terminalia chebula fruit, Curcuma longa rhizome, and Boswellia serrata gum resin in a 2:1:2 ratio, in the monosodium iodoacetate (MIA)-induced osteoarthritis (OA) rat model. LI73014F2 was orally administered once per day for three weeks. Weight-bearing distribution and arthritis index (AI) were measured once per week to confirm the OA symptoms. Synovial membrane, proteoglycan layer, and cartilage damage were investigated by histological examination, while synovial fluid interleukin-1β level was analyzed using a commercial kit. Levels of pro-inflammatory mediators/cytokines and matrix metalloproteinases (MMPs) in the cartilage tissues were investigated to confirm the anti-osteoarthritic effects of LI73014F2. LI73014F2 significantly inhibited the MIA-induced increase in OA symptoms, synovial fluid cytokine, cartilage damage, and expression levels of pro-inflammatory mediators/cytokines and MMPs in the articular cartilage. These results suggest that LI73014F2 exerts anti-osteoarthritic effects by regulating inflammatory cytokines and MMPs in MIA-induced OA rats.


2013 ◽  
Vol 36 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Su-Jin Moon ◽  
Jin-Sil Park ◽  
Jeong-Hee Jeong ◽  
Eun-Ji Yang ◽  
Mi-Kyung Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document