Heat transfer and fluid flow of helium coolant in a model of the core zone of a pebble-bed nuclear reactor

2021 ◽  
Vol 377 ◽  
pp. 111148
Author(s):  
A.A. Avramenko ◽  
N.P. Dmitrenko ◽  
I.V. Shevchuk ◽  
A.I. Tyrinov ◽  
M.M. Kovetskaya
2017 ◽  
Vol 39 (4) ◽  
pp. 55-60
Author(s):  
A. A. Avramenko ◽  
N. P. Dmitrenko ◽  
М. M. Kovetskaya ◽  
Yu. Yu. Kovetskaya

Heat and mass transfer in a model of the core of a nuclear reactor with spherical fuel elements and a helium coolant was studied. The effect of permeability of the pebble bed zone and geometric parameters on the temperature distribution of the coolant in the reactor core is analyzed.  


2017 ◽  
pp. 16-21
Author(s):  
A. Avramenko ◽  
M. Kovetska ◽  
N. Dmytrenko ◽  
Yu. Kovetska

The paper considers prospects of multi-purpose use of high-temperature gas (helium) nuclear reactors. The processes of hydrodynamics and heat exchange in the modelled core of the hightemperature nuclear reactor with spherical fuel elements were studied. The influence of geometrical and mode parameters on the temperature distribution was analyzed. The paper presents results of calculating unsteady regime with reduction of in consumption of coolant flow in the core.


Author(s):  
Xiang Zhao ◽  
Trent Montgomery ◽  
Sijun Zhang

This paper presents combined computational fluid dynamics (CFD) and discrete element method (DEM) simulations of fluid flow and relevant heat transfer in the pebble bed reactor core. In the pebble bed reactor core, the coolant passes highly complicated flow channels, which are formed by thousands of pebbles in a random way. The random packing structure of pebbles is crucial to CFD simulations results. The realistic packing structure in an entire pebble bed reactor (PBR) is generated by discrete element method (DEM). While in CFD calculations, selection of the turbulence models have great importance in accuracy and capturing the details of the flow features, in our numerical simulations both large eddy simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) models are employed to investigate the effects of different turbulence models on gas flow field and relevant heat transfer. The calculations indicate the complex flow structure within the voids between the pebbles.


Author(s):  
Shiyan Sun ◽  
Youjie Zhang ◽  
Yanhua Zheng ◽  
Xiang Fang ◽  
Xiaoyong Yang

During the operation of the High Temperature Gas-cooled Reactor (HTGR), the hot-spot temperature in the reactor core must be lower than the maximum permissible temperature of the fuel elements and the materials of construction, so that the reactor kept safe. However, no fixed temperature-measuring devices can be set in a pebble-bed core. A special spherical temperature-measuring device is adopted to make sure it brings as small impact to the reactor operation as possible. There are several metal wires with different melting points inside. The graphite thermometric balls will be put onto the top of HTR-10 reactor core, and they record and reflect the highest temperature in different positions in the core when flowing in the pebble bed. Before the reactor core temperature-measuring experiment of HTR-10, we must study the heat transfer characteristics of the graphite thermometric sphere to find out the relationship of the melting conditions and the temperature in the reactor core. A 3-D model of the graphite thermometric ball is established, and CFD method is adopted to research and figure out the thermal equilibrium time and temperature difference between the metal wires in the ball and the hot fluid outside the balls. Multiple situations are simulated, and the heat transfer process of the thermometric sphere is comprehensively studied. The heat convection is certified the most important aspect. Thermal equilibrium can be achieved within 19 minutes, far shorter than the period while the spheres flowing through the core. The simulation results can also applied to derive the thermal fluid temperature backward.


Author(s):  
Zixiang Sun ◽  
Nicholas J. Hills ◽  
Richard Scott

Abstract A systematic CFD investigation was conducted to assess the core zone (CZ) casing heat transfer of a large civil aircraft engine. Three key engine operating conditions, maximum takeoff (MTO), cruise (CRZ) and ground idle (GI) were analyzed. Steady flows were assumed. Turbulence was simulated using the realizable k-epsilon model in conjunction with the scalable wall function. Buoyancy effect was taken into account. Radiation was calculated using the discrete ordinate (DO) model. It was shown that the forced convection heat transfer dominates in most of the casing surface in the core zone, and radiation is of second importance in general. However, in some areas where both convection and radiation heat transfer are weak but the latter is relatively greater in magnitude than the former, radiation heat transfer could thus become dominant. In addition, the overall impact of radiation on casing heat transfer increases from MTO to CRZ and GI conditions, as the strength of engine load decreases. The overall effect of buoyancy on casing heat transfer is small, but could be noticeable in some local areas where flow velocity is low. The insight into heat transfer features on the engine core zone casing supported by quantified CFD evidences is the first in the public domain, as far as authors are aware.


2021 ◽  
Vol 927 (1) ◽  
pp. 012037
Author(s):  
Daddy Setyawan

Abstract In order to support the verification and validation of computational methods and codes for the safety assessment of pebble bed High-Temperature Gas-cooled Reactors (HTGRs), the calculation of first criticality and full power initial core of the high-temperature pebble bed reactor 10 MWt (HTR-10) has been defined as one of the problems specified for both code-to-code and code-to-experiment benchmarking with a focus on neutronics. HTR-10 Experimental facility serves as the source of information for the currently designed high-temperature gas-cooled nuclear reactor. It is also desired to verify the existing codes against the data obtained in the facility. In HTR-10, the core is filled with thousands of graphite and fuel pebbles. Fuel pebbles in the reactor consist of TRISO particles, which are embedded in the graphite matrix stochastically. The reactor core is also stochastically filled with pebbles. These two stochastic geometries comprise the so-called double heterogeneity of this type of reactor. In this paper, the first criticality and the power distribution in full power initial core calculations of HTR-10 are used to demonstrate treatment of this double heterogeneity using TORT-TD and Serpent for cross-section generation. HTR-10 has unique characteristics in terms of the randomness in geometry, as in all pebble bed reactors. In this technique, the core structure is modeled by TORT-TD, and Serpent is used to provide the cross-section in a double heterogeneity approach. Results obtained by TORT-TD calculations are compared with available data. It is observed that TORT-TD calculation yield sufficiently accurate results in terms of initial criticality and power distribution in full power initial core of the HTR-10 reactor.


Sign in / Sign up

Export Citation Format

Share Document