Sitagliptin mitigates oxidative stress and up-regulates mitochondrial biogenesis markers in Brown adipose tissues of high-fat diet fed obese mice through AMPK phosphorylation

2020 ◽  
Vol 19 ◽  
pp. 100265
Author(s):  
Swati Prakash ◽  
Uddipak Rai ◽  
Ankit Uniyal ◽  
Vinod Tiwari ◽  
Sanjay Singh
2021 ◽  
pp. 1-11
Author(s):  
Lissette Duarte ◽  
Javier Quezada ◽  
Luisa A. Ramirez ◽  
Karla Vasquez ◽  
Juan F. Orellana ◽  
...  

BACKGROUND: Polyphenols intake increases the function of brown adipose tissue (BAT), stimulating energy expenditure (EE). Calafate (Berberis microphylla) is a polyphenol-rich Chilean native fruit. OBJECTIVE: To analyse the effect of a treatment with a Calafate extract in the thermogenic activity of mice adipose tissues. METHODS: Forty adult C57BL/6J male mice were subdivided into four groups (n=10 each): control diet, control+Calafate (extract: 50mg total polyphenols/kg weight), high-fat diet (HF) and HF+Calafate. RESULTS: Calafate prevented the increase in body weight and the decrease EE induced by HF. In BAT, Ucp-1 transcript was influenced by the interaction between diet and Calafate (p<0.01), Pparα showed the same expression pattern as Ucp-1 and both, diet (p<0.01) and Calafate (p<0.05), induced significant effects in Sirt1. In inguinal adipose tissue, Pgc1α, Pparα, Prdm16, Sirt1, and Dio2 transcripts presented a decreased expression caused by HF, that was reversed by Calafate. In BAT, an effect of diet (p<0.05) and an interaction between diet and Calafate (p<0.01) was observed in UCP-1 protein levels. CONCLUSIONS: A treatment with Calafate drives less weight gain in mice fed with HF, and reverses the effects generated by it on the expression of thermogenic and browning markers.


2010 ◽  
Vol 34 (6) ◽  
pp. 989-1000 ◽  
Author(s):  
K L Grove ◽  
S K Fried ◽  
A S Greenberg ◽  
X Q Xiao ◽  
D J Clegg

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 308 ◽  
Author(s):  
Hyo-Geun Lee ◽  
Yu An Lu ◽  
Xining Li ◽  
Ji-Min Hyun ◽  
Hyun-Soo Kim ◽  
...  

Obesity is a serious metabolic syndrome characterized by high levels of cholesterol, lipids in the blood, and intracellular fat accumulation in adipose tissues. It is known that the suppression of adipogenic protein expression is an effective approach for the treatment of obesity, and regulates fatty acid storage and transportation in adipose tissues. The 60% ethanol extract of Grateloupia elliptica (GEE), a red seaweed from Jeju Island in Korea, was shown to exert anti-adipogenic activity in 3T3-L1 cells and in mice with high-fat diet (HFD)-induced obesity. GEE inhibited intracellular lipid accumulation in 3T3-L1 cells, and significantly reduced expression of adipogenic proteins. In vivo experiments indicated a significant reduction in body weight, as well as white adipose tissue (WAT) weight, including fatty liver, serum triglycerides, total cholesterol, and leptin contents. The expression of the adipogenic proteins, SREBP-1 and PPAR-γ, was significantly decreased by GEE, and the expression of the metabolic regulator protein was increased in WAT. The potential of GEE was shown in WAT, with the downregulation of PPAR-γ and C/EBP-α mRNA; in contrast, in brown adipose tissue (BAT), the thermogenic proteins were increased. Collectively, these research findings suggest the potential of GEE as an effective candidate for the treatment of obesity-related issues via functional foods or pharmaceutical agents.


2019 ◽  
Vol 317 (6) ◽  
pp. C1172-C1182 ◽  
Author(s):  
Min-Gyeong Shin ◽  
Hye-Na Cha ◽  
Soyoung Park ◽  
Yong-Woon Kim ◽  
Jong-Yeon Kim ◽  
...  

Selenoprotein W (SelW) is a selenium-containing protein with a redox motif found abundantly in the skeletal muscle of rodents. Previous in vitro studies suggest that SelW plays an antioxidant role; however, relatively few in vivo studies have addressed the antioxidant role of SelW. Since oxidative stress is a causative factor for the development of insulin resistance in obese subjects, we hypothesized that if SelW plays a role as an antioxidant, SelW deficiency could aggravate the oxidative stress and insulin resistance caused by a high-fat diet. SelW deficiency did not affect insulin sensitivity and H2O2 levels in the skeletal muscle of control diet-fed mice. SelW levels in the skeletal muscle were decreased by high-fat diet feeding for 12 wk. High-fat diet induced obesity and insulin resistance and increased the levels of H2O2 and oxidative stress makers, which were not affected by SelW deficiency. High-fat diet feeding increased the expression of antioxidant enzymes; however, SelW deficiency did not affect the expression levels of antioxidants. These results suggest that SelW does not play a protective role against oxidative stress and insulin resistance in the skeletal muscle of high-fat diet-fed obese mice.


2019 ◽  
Vol 665 ◽  
pp. 46-56 ◽  
Author(s):  
Akın Bodur ◽  
İmran İnce ◽  
Cemil Kahraman ◽  
İsmail Abidin ◽  
Selcen Aydin-Abidin ◽  
...  

2013 ◽  
Vol 15 (8) ◽  
pp. 905-915 ◽  
Author(s):  
Antonia Martínez-Morúa ◽  
María G. Soto-Urquieta ◽  
Elena Franco-Robles ◽  
Ismael Zúñiga-Trujillo ◽  
Alejandra Campos-Cervantes ◽  
...  

2018 ◽  
Vol 62 (15) ◽  
pp. 1800142 ◽  
Author(s):  
Tanila Wood dos Santos ◽  
Jonatan Miranda ◽  
Lucimara Teixeira ◽  
Ana Aiastui ◽  
Ander Matheu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document