Numerical investigation of tip clearance effects on propulsion performance and pressure fluctuation of a pump-jet propulsor

2019 ◽  
Vol 192 ◽  
pp. 106500 ◽  
Author(s):  
Haiting Yu ◽  
Zhenguo Zhang ◽  
Hongxing Hua
Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 556
Author(s):  
Guangtai Shi ◽  
Zongku Liu ◽  
Xiaobing Liu ◽  
Yexiang Xiao ◽  
Xuelin Tang

Tip clearance has a great effect on the flow and pressure fluctuation characteristics in a multiphase pump, especially at multiple operating points. The phase distribution and pressure fluctuation in tip clearance in a multiphase pump are revealed using the CFD (computational fluid dynamics) technology and high-speed photography methods. In this paper, the phase distribution, the gas-liquid two-phase velocity slip, and the pressure fluctuation intensity are comprehensively analyzed. Results show with the increase of the tip clearance, the multiphase pump pressurization performance is obviously deteriorated. In the meantime, the gas accumulation mainly occurs at the hub, the blade suction side (SS), and the tip clearance, and the maximum gas-liquid two-phase velocity difference is near the impeller streamwise of 0.4. In addition, the tip clearance improves the gas-liquid two-phase distribution in the pump, that is, the larger the tip clearance is, the more uniform the gas-liquid distribution becomes. Furthermore, the gas leads to the maximum pressure fluctuation intensity in the tip clearance which is closer to the tip leakage flow (TLF) outlet, and has a greater effect on the degree of flow separation in the tip clearance.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Robert Kunte ◽  
Philipp Schwarz ◽  
Benjamin Wilkosz ◽  
Peter Jeschke ◽  
Caitlin Smythe

The subject of this paper is the experimental and numerical investigation of a state-of-the-art high pressure centrifugal compressor stage with pipe diffuser for a jet engine application. This study shows the impact of impeller tip clearance- and bleed-variation on the centrifugal stage. The purpose of this paper is threefold. In the first place, it investigates the effects on the stage performance. Secondly, it seeks to explain local flow-phenomena, especially in the diffuser. Finally, it shows that steady CFD simulations are capable of predicting these phenomena. Experimental data were gathered using conventional pitot and three-hole-probes as well as particle-image-velocimetry. Numerical simulations with the CFD solver TRACE were conducted to get fundamental insight into the flow. Thus, this study contributes greatly towards understanding the principle of the flow phenomena in the pipe diffuser of a centrifugal compressor.


Author(s):  
Joachim März ◽  
Chunill Hah ◽  
Wolfgang Neise

This paper reports on an experimental and numerical investigation aimed at understanding the mechanisms of rotating instabilities in a low speed axial flow compressor. The phenomena of rotating instabilities in the current compressor were first identified with an experimental study. Then, an unsteady numerical method was applied to confirm the phenomena and to interrogate the physical mechanisms behind them. The experimental study was conducted with high-resolution pressure measurements at different clearances, employing a double phase-averaging technique. The numerical investigation was performed with an unsteady 3-D Navier-Stokes method that solves for the entire blade row. The current study reveals that a vortex structure forms near the leading edge plane. This vortex is the result of interactions among the classical tip-clearance flow, axially reversed endwall flow, and the incoming flow. The vortex travels from the suction side to the pressure side of the passage at roughly half of the rotor speed. The formation and movement of this vortex seem to be the main causes of unsteadiness when rotating instability develops. Due to the nature of this vortex, the classical tip-clearance flow does not spill over into the following blade passage. This behavior of the tip-clearance flow is why the compressor operates in a stable mode even with the rotating instability, unlike traditional rotating stall phenomena.


1993 ◽  
Vol 115 (1) ◽  
pp. 19-26 ◽  
Author(s):  
M. Inoue ◽  
M. Kuroumaru ◽  
Y. Ando

The pressure fluctuations on the casing wall of two axial flow compressor rotors with various tip clearances have been analyzed by the use of two kinds of correlation functions. The behavior of the pressure fluctuation varies depending on tip clearance and blade solidity. In the case of small tip clearance, the nature of disturbances becomes random as the flow rate is reduced to a stall condition. For moderate tip clearance, coherent-structured disturbances appear intermittently at low flow rate. They appear more frequently as the solidity is increased and the flow rate becomes lower. For large tip clearance, the coherent structured disturbances exist even at considerably higher flow rates. Corresponding to these features, there are peculiar patterns in the correlation designated as “phase-locked correlation functions.”


Sign in / Sign up

Export Citation Format

Share Document