Two-photon flow cytometry with laser scanning two-dimensional airy beams

2021 ◽  
pp. 127804
Author(s):  
Aurelio Paez ◽  
Emma M. Sundin ◽  
Gilberto Navarro ◽  
Xiujun Li ◽  
Thomas Boland ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


2012 ◽  
Vol 12 (2) ◽  
pp. 825-830
Author(s):  
S. M. Wang ◽  
S. Y. Mu ◽  
C. Zhu ◽  
Y. X. Gong ◽  
P. Xu ◽  
...  

2017 ◽  
Vol 8 (12) ◽  
pp. 5412 ◽  
Author(s):  
Omkar D. Supekar ◽  
Baris N. Ozbay ◽  
Mo Zohrabi ◽  
Philip D. Nystrom ◽  
Gregory L. Futia ◽  
...  

2021 ◽  
Author(s):  
Dasith Liyanage ◽  
Suk-Chun Moon ◽  
Ajith S. Jayasekare ◽  
Abheek Basu ◽  
Madeleine Du Toit ◽  
...  

Abstract High-temperature laser-scanning confocal microscopy (HT-LSCM) has proven to be an excellent experimental technique through in-situ observations of high temperature phase transformation to study kinetics and morphology using thin disk steel specimens. A 1.0 kW halogen lamp, within the elliptical cavity of the HT-LSCM furnace radiates heat and imposes a non-linear temperature profile across the radius of the steel sample. This local temperature profile when exposed at the solid/liquid interface determines the kinetics of solidification and phase transformation morphology. A two-dimensional numerical heat transfer model for both isothermal and transient conditions is developed for a concentrically solidifying sample. The model can accommodate solid/liquid interface velocity as an input parameter under concentric solidification with cooling rates up to 100 K/min. The model is validated against a commercial finite element analysis software package, Strand7, and optimized with experimental data obtained under near-to equilibrium conditions. The validated model can then be used to define the temperature landscape under transient heat transfer conditions.


2021 ◽  
Vol 50 (1) ◽  
pp. 29-35
Author(s):  
Shu-Gen Wei ◽  
Ling-Yun Wan ◽  
Ying Wei ◽  
Li-Li He ◽  
Jin-E Fu ◽  
...  

Eighty nine Artemisia samples treated with different concentrations of colchicine were used as breeding samples, with diploid Artemisia as the control. The ploidy levels of samples were determined by flow cytometry and confocal laser scanning microscopy (CLSM). An analysis of the flow cytometry results identified three suspected tetraploid plants and seven suspected triploid plants. The results of this study may be useful for breeding new Artemisia lines.


Sign in / Sign up

Export Citation Format

Share Document