Laser absorption behavior of randomly packed powder-bed during selective laser melting of SiC and TiB2 reinforced Al matrix composites

2019 ◽  
Vol 119 ◽  
pp. 105600 ◽  
Author(s):  
Dongdong Gu ◽  
Ying Yang ◽  
Lixia Xi ◽  
Jiankai Yang ◽  
Mujian Xia
2018 ◽  
Vol 32 (10) ◽  
pp. 1850105 ◽  
Author(s):  
Lianfeng Wang ◽  
Biao Yan ◽  
Lijie Guo ◽  
Dongdong Gu

A newly transient mesoscopic model with a randomly packed powder-bed has been proposed to investigate the heat and mass transfer and laser process quality between neighboring tracks during selective laser melting (SLM) AlSi12 alloy by finite volume method (FVM), considering the solid/liquid phase transition, variable temperature-dependent properties and interfacial force. The results apparently revealed that both the operating temperature and resultant cooling rate were obviously elevated by increasing the laser power. Accordingly, the resultant viscosity of liquid significantly reduced under a large laser power and was characterized with a large velocity, which was prone to result in a more intensive convection within pool. In this case, the sufficient heat and mass transfer occurred at the interface between the previously fabricated tracks and currently building track, revealing a strongly sufficient spreading between the neighboring tracks and a resultant high-quality surface without obvious porosity. By contrast, the surface quality of SLM-processed components with a relatively low laser power notably weakened due to the limited and insufficient heat and mass transfer at the interface of neighboring tracks. Furthermore, the experimental surface morphologies of the top surface were correspondingly acquired and were in full accordance to the calculated results via simulation.


2018 ◽  
Vol 941 ◽  
pp. 2184-2189
Author(s):  
Gang Ji ◽  
Zhan Qiu Tan ◽  
Xiao Peng Li ◽  
Zhi Qiang Li ◽  
Jean Pierre Kruth

Al and Al12Si matrix composites reinforced with synthetic diamond particles have been developed by using conventional powder metallurgy and emerging additive manufacturing techniques, i.e. vacuum hot pressing (VHP) and selective laser melting (SLM), respectively. Relative density and interface structure have been evaluated to relate to measured thermal conductivity (TC) of the composite. Despite very different physical and metallurgical mechanisms (VHP vs. SLM), the diamond/Al interface can be tailored allowing to form a ‘clean’ and tightly-adhered interface at the micrometer scale in both cases. This so-called diffusion-bonded interface is the most favorable for enhancing overall TC which demonstrates the potential of SLM for processing multifunctional Al matrix composites. However, how to realize full densification and simultaneously maintain such an interface structure during SLM remains a key technical problem to figure out.


Author(s):  
Jonas Nitzler ◽  
Christoph Meier ◽  
Kei W. Müller ◽  
Wolfgang A. Wall ◽  
N. E. Hodge

AbstractThe elasto-plastic material behavior, material strength and failure modes of metals fabricated by additive manufacturing technologies are significantly determined by the underlying process-specific microstructure evolution. In this work a novel physics-based and data-supported phenomenological microstructure model for Ti-6Al-4V is proposed that is suitable for the part-scale simulation of laser powder bed fusion processes. The model predicts spatially homogenized phase fractions of the most relevant microstructural species, namely the stable $$\beta $$ β -phase, the stable $$\alpha _{\text {s}}$$ α s -phase as well as the metastable Martensite $$\alpha _{\text {m}}$$ α m -phase, in a physically consistent manner. In particular, the modeled microstructure evolution, in form of diffusion-based and non-diffusional transformations, is a pure consequence of energy and mobility competitions among the different species, without the need for heuristic transformation criteria as often applied in existing models. The mathematically consistent formulation of the evolution equations in rate form renders the model suitable for the practically relevant scenario of temperature- or time-dependent diffusion coefficients, arbitrary temperature profiles, and multiple coexisting phases. Due to its physically motivated foundation, the proposed model requires only a minimal number of free parameters, which are determined in an inverse identification process considering a broad experimental data basis in form of time-temperature transformation diagrams. Subsequently, the predictive ability of the model is demonstrated by means of continuous cooling transformation diagrams, showing that experimentally observed characteristics such as critical cooling rates emerge naturally from the proposed microstructure model, instead of being enforced as heuristic transformation criteria. Eventually, the proposed model is exploited to predict the microstructure evolution for a realistic selective laser melting application scenario and for the cooling/quenching process of a Ti-6Al-4V cube of practically relevant size. Numerical results confirm experimental observations that Martensite is the dominating microstructure species in regimes of high cooling rates, e.g., due to highly localized heat sources or in near-surface domains, while a proper manipulation of the temperature field, e.g., by preheating the base-plate in selective laser melting, can suppress the formation of this metastable phase.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 528
Author(s):  
Chunyue Yin ◽  
Zhehao Lu ◽  
Xianshun Wei ◽  
Biao Yan ◽  
Pengfei Yan

The objective of the study is to investigate the corresponding microstructure and mechanical properties, especially bending strength, of the hypereutectic Al-Si alloy processed by selective laser melting (SLM). Almost dense Al-22Si-0.2Fe-0.1Cu-Re alloy is fabricated from a novel type of powder materials with optimized processing parameters. Phase analysis of such Al-22Si-0.2Fe-0.1Cu-Re alloy shows that the solubility of Si in Al matrix increases significantly. The fine microstructure can be observed, divided into three zones: fine zones, coarse zones, and heat-affected zones (HAZs). Fine zones are directly generated from the liquid phase with the characteristic of petaloid structures and bulk Al-Si eutectic. Due to the fine microstructure induced by the rapid cooling rate of SLM, the primary silicon presents a minimum average size of ~0.5 μm in fine zones, significantly smaller than that in the conventional produced hypereutectic samples. Moreover, the maximum value of Vickers hardness reaches ~170 HV0.2, and bending strength increases to 687.70 MPa for the as-built Al-22Si-0.2Fe-0.1Cu-Re alloys parts, which is much higher than that of cast counterparts. The formation mechanism of this fine microstructure and the enhancement reasons of bending strength are also discussed.


Sign in / Sign up

Export Citation Format

Share Document