Scaling laws for gas–solid riser flow through two-fluid model simulation

Particuology ◽  
2011 ◽  
Vol 9 (2) ◽  
pp. 121-129 ◽  
Author(s):  
P.R. Naren ◽  
Vivek.V. Ranade
2021 ◽  
Vol 3 (4) ◽  
Author(s):  
R. Ponalagusamy ◽  
Ramakrishna Manchi

AbstractThe present communication presents a theoretical study of blood flow through a stenotic artery with a porous wall comprising Brinkman and Darcy layers. The governing equations describing the flow subjected to the boundary conditions have been solved analytically under the low Reynolds number and mild stenosis assumptions. Some special cases of the problem are also presented mathematically. The significant effects of the rheology of blood and porous wall of the artery on physiological flow quantities have been investigated. The results reveal that the wall shear stress at the stenotic throat increases dramatically for the thinner porous wall (i.e. smaller values of the Brinkman and Darcy regions) and the rate of increase is found to be 18.46% while it decreases for the thicker porous wall (i.e. higher values of the Brinkman and Darcy regions) and the rate of decrease is found to be 10.21%. Further, the streamline pattern in the stenotic region has been plotted and discussed.


Author(s):  
Yu Xu ◽  
Yulin Wu ◽  
Shuhong Liu ◽  
Yong Li

In this paper, the two-fluid model was adopted to analyze the cavitating flow. Based on Boltzmann equation, governing equations for two-phase cavitating flow were obtained by using the microscopic kinetic theory, in which the equation terms for mass and momentum transportations can be obtained directly. Then the RNG k–ε–kg turbulence model, that is RNG k–ε model for the liquid phase and kg model for the cavity phase, was used to close the Reynolds time-averaged equations. According to the governing equations above, the simulation of the two-phase cavitating flow through a closed pump sump has been carried out. The calculated results have been compared with a PIV experiment. Good agreement exhibited.


2020 ◽  
Vol 104 ◽  
pp. 183-191 ◽  
Author(s):  
Zihong Xia ◽  
Peng Shan ◽  
Caixia Chen ◽  
Hailiang Du ◽  
Jie Huang ◽  
...  

2009 ◽  
Vol 131 (9) ◽  
Author(s):  
A. K. Das ◽  
P. K. Das ◽  
J. R. Thome

The two fluid model is used to simulate upward gas-liquid bubbly flow through a vertical conduit. Coalescence and breakup of bubbles have been accounted for by embedding the population balance technique in the two fluid model. The simulation enables one to track the axial development of the voidage pattern and the distribution of the bubbles. Thereby it has been possible to propose a new criterion for the transition from bubbly to slug flow regime. The transition criteria depend on (i) the breakage and coalescence frequency, (ii) the bubble volume count below and above the bubble size introduced at the inlet, and (iii) the bubble count histogram. The prediction based on the present criteria exhibits excellent agreement with the experimental data. It has also been possible to simulate the transition from bubbly to dispersed bubbly flow at a high liquid flow rate using the same model.


Sign in / Sign up

Export Citation Format

Share Document