Photodynamic therapy inhibits cell growth and enhances the histone deacetylase-mediated viability impairment in Cryptococcus spp. in vitro

2020 ◽  
Vol 29 ◽  
pp. 101583
Author(s):  
José Athayde Vasconcelos Morais ◽  
Mosar C. Rodrigues ◽  
Fernanda F. Ferreira ◽  
Kunal Ranjan ◽  
Ricardo Bentes Azevedo ◽  
...  
2021 ◽  
Author(s):  
María Laura Mugas ◽  
Gustavo Calvo ◽  
Juliana Marioni ◽  
Mariela Céspedes ◽  
Florencia Martinez ◽  
...  

Abstract Photodynamic therapy (PDT) is an anticancer treatment involving administration of a tumour-localizing photosensitizer, followed by activation by light of a specific wavelength.In previous work, we showed that the natural anthraquinone (AQ) Parietin (PTN), was a promising photosensitizer for photodynamic therapy of leukemic cells in vitro. The present work aimed to analyze the photosensitizing ability of PTN in the mammary carcinoma LM2 cells in vitro and in vivo in a model of subcutaneously implanted tumours.Photodynamic therapy mediated by Parietin (PTN-PDT) (PTN 30 µM, 1 h and 1.78 J/cm2 of blue light) impaired cell growth and migration of LM2 cells in vitro. PTN per se induced a significant decrease in cell migration, and it was even more marked after illumination (migration index was 0.65 for PTN and 0.30 for PTN-PDT), suggesting that both PTN and parietin-mediated PDT would be potential inhibitors of metastasis.Fluorescence microscopy observation indicated cytoplasmatic localization of the AQ and no fluorescence at all was recorded in the nuclei.When PTN (1.96 mg) dissolved in dimethyl sulfoxide was topically applied on the skin of mice subcutaneously implanted with LM2 cells, PTN orange fluorescence was strongly noticed in the stratum corneum and also in the inner layers of the tumour up to approximately 5 mm. After illumination with 12.74 J/cm2 of blue light, one PDT dose at day 1, induced a significant tumour growth delay at day 3, which was not maintained in time. Therefore, we administered a second PTN-PDT boost on day 3. Under these conditions, the delay of tumour growth was 28 % both on days 3 and 4 of the experiment.Histology of tumours revealed massive tumour necrosis up to 4 mm of depth. Intriguingly, a superficial area of viable tumour in the 1 mm superficial area, and a quite conserved intact skin was evidenced. We hypothesize that this may be due to PTN aggregation in contact with the skin and tumour milieu of the most superficial tumour layers, thus avoiding its photochemical properties.On the other hand, normal skin treated with PTN-PDT exhibited slight histological changes. These preliminary findings encourage further studies of natural AQs administered in different vehicles, for topical treatment of cutaneous malignancies.


2006 ◽  
Vol 60 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Anthony Tumber ◽  
Laura S. Collins ◽  
Kamille Dumong Petersen ◽  
Annemette Thougaard ◽  
Sanne J. Christiansen ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4151-4151
Author(s):  
Hongbin Liu ◽  
Penelope A. Mayes ◽  
Patrick Perlmutter ◽  
Joseph J. Mckendrick ◽  
Anthony E. Dear

Abstract Azacitidine (AZA), a demethylating agent, has recently been demonstrated to have efficacy in the treatment of myelodysplasia and acute myeloid leukemia. A potential concern when considering the use of this agent is a recent report demonstrating AZA-mediated re-activation of matrix metalloproteinase-9 (MMP-9) expression facilitating the invasive metastatic phenotype (Sato NM et al J Natl Cancer Inst. 2003 Feb 19;95(4):327–30). Histone deacetylase inhibitors (HDACi) are a recently identified class of agents with considerable in vitro and in vivo activity and early phase clinical efficacy in the treatment of haematological malignancies (Bolden JE Nat Rev Drug Discov. 2006 Sep;5(9):769–84). Pre-clinical in vitro studies suggest that addition of HDACi to 5-aza-2′-deoxycytidine, a derivative of AZA, enhances the efficacy of this agent (Yang H et al Leuk Res. 2005 Jul; 29(7):739–48) whilst early phase clinical trials identify therapeutic activity using a combination of demethylating agents and HDACi (Garcia-Manero G, Blood. 2006 Nov 15;108(10):3271–9). Our current study aimed to determine the in vitro activity and molecular mechanisms of action of the novel HDACi MCT-3, a derivative of Oxamflatin, a hydroxamate analogue, (Dear AE, et al, Org Biomol Chem, 2006, 4, 3778–3784) in the HL-60 cell line alone and combination with AZA. AZA (1.0 microM) and MCT-3 (2.5 microM) alone inhibited HL-60 cell growth over 24hrs by 40%, 30% respectively. The combination of AZA with MCT-3 inhibited HL-60 cell growth up to 50%. Real-time PCR demonstrated that AZA and MCT-3 alone increased p15INK4b and Caspase 3 mRNA expression 2 fold. A Combination of AZA with MCT-3 increased p15INK4b and Caspase 3 mRNA expression up to 2.5 and increased p21WAF1/CIP1 and the orphan nuclear receptor Nur77 expression 2 fold. A combination of AZA and MCT-3 significantly attenuated AZA-induced MMP-9 mRNA expression and proteolytic activity. AZA and MCT-3 alone reduce HL-60 cell growth in vitro. Addition of MCT-3 to AZA increased inhibition of cell growth, suggesting that this HDACi may have the potential for additive activity with demethylating agents. AZA and MCT-3 have similar effects on expression of genes implicated in cell cycle arrest and apoptosis. Increased expression of p21WAF1/CIP1 and the orphan nuclear receptor Nur77 via inhibition of cell cycle progression and enhanced apoptosis may in part be responsible for the enhanced anti-leukaemia activity of the combination of AZA and MCT-3. Importantly MCT-3 is able to inhibit AZA-mediated induction of MMP-9 expression.


2006 ◽  
Vol 175 (4S) ◽  
pp. 257-257
Author(s):  
Jennifer Sung ◽  
Qinghua Xia ◽  
Wasim Chowdhury ◽  
Shabana Shabbeer ◽  
Michael Carducci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document