Determination of near-surface attenuation, with κ parameter, to obtain the seismic moment, stress drop, source dimension and seismic energy for microearthquakes in the Granada Basin (Southern Spain)

2004 ◽  
Vol 141 (1) ◽  
pp. 9-26 ◽  
Author(s):  
J.M Garcı́a Garcı́a ◽  
M.D Romacho ◽  
A Jiménez
1975 ◽  
Vol 65 (1) ◽  
pp. 261-276
Author(s):  
S. J. Gibowicz

abstract A theoretical relationship between seismic moment and local magnitude ML is derived from the relationship between magnitude ML and source dimension given by Randall (1973). For a circular fault of radius smaller than about 0.5 km, the magnitude ML is proportional to the logarithm of the seismic moment Mo, and these values alone cannot specify other source parameters. For greater radii the values of Mo and ML define Brune's (1970) far-field spectrum and in these cases other source characteristics can be readily obtained. The seismic moment can be estimated from the long-period amplitudes, and therefore the moment-magnitude relation provides a convenient method for determination of the source properties. The relationship between the logarithm of the various source parameters and seismic moment is considered for a number of regions and earthquake sequences. It appears to be of linear form and, furthermore, it seems that the same slope coefficient can be used in different regions. Source properties show regional differences, and the most suitable parameter to describe these differences is the average displacement. Besides the regional variations, there seems to be a time variation of source properties. This is the case for the Inangahua aftershock sequence, during which the variation of the displacement residuals correlates with the variation of the coefficient b, which defines the frequency-magnitude relation.


1984 ◽  
Vol 74 (2) ◽  
pp. 395-415
Author(s):  
D. J. Doornbos

Abstract The determination of radiated seismic energy on the one hand, and of source size and static stress drop on the other, depends in principle on a representation of different parts of the source spectrum. In practice with band-limited data from a sparse network, the required source parameterization is often the same. Spectral models parameterized by the source's central moments of degree zero and two are introduced as an approximation to the general representation of the amplitude spectrum in terms of the central moments of even degree. Phase spectra are not used, apart from polarity. These models are shown to simulate well the principal features of common circular and Haskell type of models, including the corner frequency shift of P waves with respect to S waves, and the relation between rupture velocity and maximum seismic efficiency. Spectral bandwidths and the determination of radiated energy and apparent stress are contrasted to time domain pulse widths and the determination of source size and static stress drop in these models. The consequences of a reduced number of source parameters are examined, in particular for circular models and point source approximations; in these cases, results for radiated energy can be obtained in closed form. The scaling of radiated energy with moment is assumed to be linear for simple sources, but in stochastic models of complex sources the scaling may be between linear and quadratic. A relatively large increase of radiated energy with moment would be accompanied by an underestimate of source size and an overestimate of stress drop. However, the determination of radiated energy may still be correct.


2020 ◽  
Vol 4 (4) ◽  
pp. 393-446
Author(s):  
N.A. Sycheva ◽  
◽  
L.M. Bogomolov ◽  

A generalization of the results on the stress drop and the specific seismic energy for the earthquakes in Northern Eurasia has been made. The relationship of these parameters with the seismic moment and the magnitude has been analyzed. Detailed studies for the Northern Tien Shan (Bishkek geodynamic polygon) were carried out, the values of the dynamic parameters of the sources for 183 earthquakes of various energy classes (K = 8.7–14.8) were obtained: angular frequency, spectral density parameter, scalar seismic moment, source radius, stress drop level, seismic energy and specific seismic energy. Two models have been used to compute the source radius and the stress drop – the Brune approach and the improved Madariaga–Kaneko–Shearer model. For relatively weak events, a power-law dependence (regression) of the stress drop on the scalar seismic moment M0 has been identified, that complies with the results on the power-law dependence of the specific seismic energy on M0 in a number of other regions of Northern Eurasia. The relationship between the type of source movement and the stress drop level has been noted as well.


2021 ◽  
Vol 13 (11) ◽  
pp. 2045
Author(s):  
Anaí Caparó Bellido ◽  
Bradley C. Rundquist

Snow cover is an important variable in both climatological and hydrological studies because of its relationship to environmental energy and mass flux. However, variability in snow cover can confound satellite-based efforts to monitor vegetation phenology. This research explores the utility of the PhenoCam Network cameras to estimate Fractional Snow Cover (FSC) in grassland. The goal is to operationalize FSC estimates from PhenoCams to inform and improve the satellite-based determination of phenological metrics. The study site is the Oakville Prairie Biological Field Station, located near Grand Forks, North Dakota. We developed a semi-automated process to estimate FSC from PhenoCam images through Python coding. Compared with previous research employing RGB images only, our use of the monochrome RGB + NIR (near-infrared) reduced pixel misclassification and increased accuracy. The results had an average RMSE of less than 8% FSC compared to visual estimates. Our pixel-based accuracy assessment showed that the overall accuracy of the images selected for validation was 92%. This is a promising outcome, although not every PhenoCam Network system has NIR capability.


Geophysics ◽  
1986 ◽  
Vol 51 (1) ◽  
pp. 12-19 ◽  
Author(s):  
James F. Mitchell ◽  
Richard J. Bolander

Subsurface structure can be mapped using refraction information from marine multichannel seismic data. The method uses velocities and thicknesses of shallow sedimentary rock layers computed from refraction first arrivals recorded along the streamer. A two‐step exploration scheme is described which can be set up on a personal computer and used routinely in any office. It is straightforward and requires only a basic understanding of refraction principles. Two case histories from offshore Peru exploration demonstrate the scheme. The basic scheme is: step (1) shallow sedimentary rock velocities are computed and mapped over an area. Step (2) structure is interpreted from the contoured velocity patterns. Structural highs, for instance, exhibit relatively high velocities, “retained” by buried, compacted, sedimentary rocks that are uplifted to the near‐surface. This method requires that subsurface structure be relatively shallow because the refracted waves probe to depths of one hundred to over one thousand meters, depending upon the seismic energy source, streamer length, and the subsurface velocity distribution. With this one requirement met, we used the refraction method over a wide range of sedimentary rock velocities, water depths, and seismic survey types. The method is particularly valuable because it works well in areas with poor seismic reflection data.


1992 ◽  
Vol 111 (2) ◽  
pp. 270-280 ◽  
Author(s):  
F. Miguel ◽  
J. M. Ibáñez ◽  
G. Alguacil ◽  
J. A. Canas ◽  
F. Vidal ◽  
...  
Keyword(s):  

2021 ◽  
Vol 228 (1) ◽  
pp. 134-146
Author(s):  
Jian Wen ◽  
Jiankuan Xu ◽  
Xiaofei Chen

SUMMARY The stress drop is an important dynamic source parameter for understanding the physics of source processes. The estimation of stress drops for moderate and small earthquakes is based on measurements of the corner frequency ${f_c}$, the seismic moment ${M_0}$ and a specific theoretical model of rupture behaviour. To date, several theoretical rupture models have been used. However, different models cause considerable differences in the estimated stress drop, even in an idealized scenario of circular earthquake rupture. Moreover, most of these models are either kinematic or quasi-dynamic models. Compared with previous models, we use the boundary integral equation method to simulate spontaneous dynamic rupture in a homogeneous elastic full space and then investigate the relations between the corner frequency, seismic moment and source dynamic parameters. Spontaneous ruptures include two states: runaway ruptures, in which the rupture does not stop without a barrier, and self-arresting ruptures, in which the rupture can stop itself after nucleation. The scaling relationships between ${f_c}$, ${M_0}$ and the dynamic parameters for runaway ruptures are different from those for self-arresting ruptures. There are obvious boundaries in those scaling relations that distinguish runaway ruptures from self-arresting ruptures. Because the stress drop varies during the rupture and the rupture shape is not circular, Eshelby's analytical solution may be inaccurate for spontaneous dynamic ruptures. For runaway ruptures, the relations between the corner frequency and dynamic parameters coincide with those in the previous kinematic or quasi-dynamic models. For self-arresting ruptures, the scaling relationships are opposite to those for runaway ruptures. Moreover, the relation between ${f_c}$ and ${M_0}$ for a spontaneous dynamic rupture depends on three factors: the dynamic rupture state, the background stress and the nucleation zone size. The scaling between ${f_c}$ and ${M_0}$ is ${f_c} \propto {M_0^{ - n}}$, where n is larger than 0. Earthquakes with the same dimensionless dynamic parameters but different nucleation zone sizes are self-similar and follow a ${f_c} \propto {M_0^{ - 1/3}}$ scaling law. However, if the nucleation zone size does not change, the relation between ${f_c}$ and ${M_0}$ shows a clear departure from self-similarity due to the rupture state or background stress.


1986 ◽  
Vol 8 ◽  
pp. 78-81 ◽  
Author(s):  
W. Haeberli ◽  
F. Epifani

Techniques for mapping the distribution of buried glacier ice are discussed and the results, from a study carried out within the framework of flood protection work in the Italian Alps, are presented. Bottom temperatures of the winter snow cover (BTS) primarily indicate the heat flow conditions in the underlying ground and mainly depend on the presence or absence of an ice layer beneath the surface. Determination of BTS values is therefore an inexpensive method for quickly mapping the near-surface underground ice in areas where there is 1 m or more of winter snow cover. At greater depths, and/or when more detail is required, geoelectrical resistivity soundings and seismic refraction soundings are most commonly used to investigate underground ice. A combination of the two sounding techniques allows the vertical extent and the main characteristics (frozen ground, dead glacier ice) to be determined in at least a semi-quantitative way. Complications mainly arise from irregularity in the horizontal extension of the studied underground ice bodies, and they may have to be overcome by expensive core drillings and borehole measurements. Widespread occurrence of buried glacier ice was observed in morainic deposits, surrounding an ice-dammed lake near Macugnaga, Italy.


Sign in / Sign up

Export Citation Format

Share Document