Bacillomycin D-C16 inhibits growth of Fusarium verticillioides and production of fumonisin B1 in maize kernels

Author(s):  
Fuxing Lin ◽  
Xiaoyu Zhu ◽  
Jing Sun ◽  
Fanqiang Meng ◽  
Zhaoxin Lu ◽  
...  
2003 ◽  
Vol 66 (11) ◽  
pp. 2116-2122 ◽  
Author(s):  
WON-BO SHIM ◽  
JOSEPH E. FLAHERTY ◽  
CHARLES P. WOLOSHUK

Fusarium verticillioides produces a group of mycotoxins known as fumonisins in maize kernels. Fumonisins are associated with a variety of mycotoxicoses in humans and animals; thus, their presence in food is a considerable safety issue. This study addressed fumonisin B1 (FB1) production in two components of the maize kernel, namely the germ tissues and the degermed kernel. Growth of F. verticillioides was similar in colonized germ tissue and degermed kernels, but FB1 production was at least five times higher in degermed maize kernels than in germ tissue. Expression of the fumonisin polyketide synthase gene, FUM1, as measured by β-glucuronidase (GUS) and Northern blot analysis, followed the same pattern as FB1 production. Also correlated to FB1 was a concomitant drop in pH of the colonized degermed kernels. A time course experiment showed that degermed kernels inoculated with F. verticillioides became acidified over time (from pH 6.4 to 4.7 after 10 days of incubation), whereas colonized germ tissue became alkaline over the same period (from pH 6.5 to 8.5). Because conditions of acidic pH are conducive to FB1 production and alkaline pH is repressive, the observed correlation between the acidification of degermed kernels and the increase in FB1 provides one explanation for the observed differences in FB1 levels.


2005 ◽  
Vol 18 (12) ◽  
pp. 1333-1339 ◽  
Author(s):  
B. H. Bluhm ◽  
C. P. Woloshuk

Fusarium verticillioides, a fungal pathogen of maize, produces fumonisin mycotoxins that adversely affect human and animal health. Basic questions remain unanswered regarding the interactions between the host plant and the fungus that lead to the accumulation of fumonisins in maize kernels. In this study, we evaluated the role of kernel endosperm composition in regulating fumonisin B1 (FB1) biosynthesis. We found that kernels lacking starch due to physiological immaturity did not accumulate FB1. Quantitative polymerase chain reaction analysis indicated that kernel development also affected the expression of fungal genes involved in FB1 biosynthesis, starch metabolism, and nitrogen regulation. A mutant strain of F. verticillioides with a disrupted α-amylase gene was impaired in its ability to produce FB1 on starchy kernels, and both the wild-type and mutant strains produced significantly less FB1 on a high-amylose kernel mutant of maize. When grown on a defined medium with amylose as the sole carbon source, the wild-type strain produced only trace amounts of FB1, but it produced large amounts of FB1 when grown on amylopectin or dextrin, a product of amylopectin hydrolysis. We conclude that amylopectin induces FB1 production in F. verticillioides. This study provides new insight regarding the interaction between the fungus and maize kernel during pathogenesis and highlights important areas that need further study.


Microbiology ◽  
2011 ◽  
Vol 157 (9) ◽  
pp. 2658-2669 ◽  
Author(s):  
Hun Kim ◽  
Jonathon E. Smith ◽  
John B. Ridenour ◽  
Charles P. Woloshuk ◽  
Burton H. Bluhm

In Fusarium verticillioides, a ubiquitous pathogen of maize, virulence and mycotoxigenesis are regulated in response to the types and amounts of carbohydrates present in maize kernels. In this study, we investigated the role of a putative hexokinase-encoding gene (HXK1) in growth, development and pathogenesis. A deletion mutant (Δhxk1) of HXK1 was not able to grow when supplied with fructose as the sole carbon source, and growth was impaired when glucose, sucrose or maltotriose was provided. Additionally, the Δhxk1 mutant produced unusual swollen hyphae when provided with fructose, but not glucose, as the sole carbon source. Moreover, the Δhxk1 mutant was impaired in fructose uptake, although glucose uptake was unaffected. On maize kernels, the Δhxk1 mutant was substantially less virulent than the wild-type, but virulence on maize stalks was not impaired, possibly indicating a metabolic response to tissue-specific differences in plant carbohydrate content. Finally, disruption of HXK1 had a pronounced effect on fungal metabolites produced during colonization of maize kernels; the Δhxk1 mutant produced approximately 50 % less trehalose and 80 % less fumonisin B1 (FB1) than the wild-type. The reduction in trehalose biosynthesis likely explains observations of increased sensitivity to osmotic stress in the Δhxk1 mutant. In summary, this study links early events in carbohydrate sensing and glycolysis to virulence and secondary metabolism in F. verticillioides, and thus provides a new foothold from which the genetic regulatory networks that underlie pathogenesis and mycotoxigenesis can be unravelled and defined.


2019 ◽  
Vol 114 (1) ◽  
pp. 69
Author(s):  
Francis Collins MUGA ◽  
Tilahun Seyoum WORKNEH ◽  
Moses Okoth MARENYA

<p>The study aimed at measuring changes in chemical composition of maize kernels due to <em>Aspergillus flavus</em> Link. and <em>Fusarium verticillioides</em> (Sacc.) Nirenberg infection. The samples of maize kernels were incubated at 28 °C for 7, 14, 21, and 28 days. The samples were analysed for mycotoxin, moisture, crude fat, crude protein, crude ash, and crude fibre. Maize kernels inoculated with <em>A. flavus</em> and <em>F. verticillioides</em> exhibited a significant decrease in crude fat. Aflatoxin B1 (AFB1) contamination increased in maize kernels inoculated with <em>A. flavus</em>, and fumonisin B1 (FB1) in kernels inoculated with <em>F. verticillioides</em>. Crude ash and crude fibre content showed no changes. Incubation time significantly affected AFB1 and FB1 contamination levels, moisture, crude fat, and crude protein contents. AFB1 and FB1 contamination were significantly correlated with crude fat degradation. The tested strains had similar deteriorative effects on maize kernels. The significant changes in the proximate composition were only observed in maize kernels with mycotoxin contamination above the regulatory limit of 10 µg kg−1, thus not fit for human consumption.</p>


Plant Science ◽  
2013 ◽  
Vol 210 ◽  
pp. 183-192 ◽  
Author(s):  
Alessandra Lanubile ◽  
Antonio Logrieco ◽  
Paola Battilani ◽  
Robert H. Proctor ◽  
Adriano Marocco

2020 ◽  
Author(s):  
Wenying Yu ◽  
Mei Lin ◽  
Minghui Peng ◽  
Huijuan Yan ◽  
Jie Zhou ◽  
...  

AbstractPeroxisomes are ubiquitous organelles in eukaryotic cells that fulfill various important metabolic functions. In this study, we investigated the role of Docking/Translocation Module (DTM) peroxins, mainly FvPex8, FvPex13, FvPex14, and FvPex33, in Fusarium verticillioides virulence and fumonisin B1 (FB1) biosynthesis. Protein interaction experiments suggested that FvPex13 serves as the core subunit of F. verticillioides DTM. When we generated gene deletion mutants (ΔFvpex8, ΔFvpex13, ΔFvpex14, ΔFvpex33, ΔFvpex33/14) and examined whether the expression of other peroxin genes were affected in the DTM mutants, ΔFvpex8 strain showed most drastic changes to PEX gene expression profiles. Deletion mutants exhibited disparity in carbon source utilization and defect in cell wall integrity when stress agents were applied. Under nutrient starvation, mutants also showed higher levels of lipid droplet accumulation. Notably, ΔFvpex8 mutant showed significant FB1 reduction and altered expression of FUM1 and FUM19 genes. However, FvPex13 was primarily responsible for virulence, while ΔFvpex33/14 double mutant also showed virulence defect. In summary, our study suggests that FvPex13 is the core component of DTM, regulating peroxisome membrane biogenesis as well as PTS1- and PTS2-mediated transmembrane cargo transportation. Importantly, we predict FvPex8 as a key component in DTM that affects peroxisome function in FB1 biosynthesis in F. verticillioides.


Toxins ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 478 ◽  
Author(s):  
Ladi Peter Mshelia ◽  
Jinap Selamat ◽  
Nik Iskandar Putra Samsudin ◽  
Mohd Y. Rafii ◽  
Noor-Azira Abdul Mutalib ◽  
...  

Climate change is primarily manifested by elevated temperature and carbon dioxide (CO2) levels and is projected to provide suitable cultivation grounds for pests and pathogens in the otherwise unsuitable regions. The impacts of climate change have been predicted in many parts of the world, which could threaten global food safety and food security. The aim of the present work was therefore to examine the interacting effects of water activity (aw) (0.92, 0.95, 0.98 aw), CO2 (400, 800, 1200 ppm) and temperature (30, 35 °C and 30, 33 °C for Fusarium verticillioides and F. graminearum, respectively) on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum isolated from maize. To determine fungal growth, the colony diameters were measured on days 1, 3, 5, and 7. The mycotoxins produced were quantified using a quadrupole-time-of-flight mass spectrometer (QTOF-MS) combined with ultra-high-performance liquid chromatography (UHPLC) system. For F. verticillioides, the optimum conditions for growth of fumonisin B1 (FB1), and fumonisin B2 (FB2) were 30 °C + 0.98 aw + 400 ppm CO2. These conditions were also optimum for F. graminearum growth, and zearalenone (ZEA) and deoxynivalenol (DON) production. Since 30 °C and 400 ppm CO2 were the baseline treatments, it was hence concluded that the elevated temperature and CO2 levels tested did not seem to significantly impact fungal growth and mycotoxin production of acclimatised Fusarium isolates. To the best of our knowledge thus far, the present work described for the first time the effects of simulated climate change conditions on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum.


Sign in / Sign up

Export Citation Format

Share Document