Permeability change in hydrate bearing sediments as a function of hydrate saturation: A theoretical and experimental study

Author(s):  
Xin Lei ◽  
Yanbin Yao ◽  
Wanjing Luo ◽  
Zhiang Wen
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 804
Author(s):  
Lin Liu ◽  
Xiumei Zhang ◽  
Xiuming Wang

Natural gas hydrate is a new clean energy source in the 21st century, which has become a research point of the exploration and development technology. Acoustic well logs are one of the most important assets in gas hydrate studies. In this paper, an improved Carcione–Leclaire model is proposed by introducing the expressions of frame bulk modulus, shear modulus and friction coefficient between solid phases. On this basis, the sensitivities of the velocities and attenuations of the first kind of compressional (P1) and shear (S1) waves to relevant physical parameters are explored. In particular, we perform numerical modeling to investigate the effects of frequency, gas hydrate saturation and clay on the phase velocities and attenuations of the above five waves. The analyses demonstrate that, the velocities and attenuations of P1 and S1 are more sensitive to gas hydrate saturation than other parameters. The larger the gas hydrate saturation, the more reliable P1 velocity. Besides, the attenuations of P1 and S1 are more sensitive than velocity to gas hydrate saturation. Further, P1 and S1 are almost nondispersive while their phase velocities increase with the increase of gas hydrate saturation. The second compressional (P2) and shear (S2) waves and the third kind of compressional wave (P3) are dispersive in the seismic band, and the attenuations of them are significant. Moreover, in the case of clay in the solid grain frame, gas hydrate-bearing sediments exhibit lower P1 and S1 velocities. Clay decreases the attenuation of P1, and the attenuations of S1, P2, S2 and P3 exhibit little effect on clay content. We compared the velocity of P1 predicted by the model with the well log data from the Ocean Drilling Program (ODP) Leg 164 Site 995B to verify the applicability of the model. The results of the model agree well with the well log data. Finally, we estimate the hydrate layer at ODP Leg 204 Site 1247B is about 100–130 m below the seafloor, the saturation is between 0–27%, and the average saturation is 7.2%.


2019 ◽  
Vol 174 ◽  
pp. 696-703 ◽  
Author(s):  
Nariman Mahabadi ◽  
Sheng Dai ◽  
Yongkoo Seol ◽  
Jaewon Jang

2019 ◽  
Vol 173 ◽  
pp. 548-555
Author(s):  
Fang Liu ◽  
Haoyu Sun ◽  
Jongwon Jung ◽  
Xuhui Zhang ◽  
Xin Ju

2019 ◽  
Vol 64 ◽  
pp. 1-14 ◽  
Author(s):  
Tianyu Chen ◽  
Xia-Ting Feng ◽  
Guanglei Cui ◽  
Yuling Tan ◽  
Zhejun Pan

2019 ◽  
Vol 180 ◽  
pp. 435-444 ◽  
Author(s):  
Anthony Okwananke ◽  
Aliakbar Hassanpouryouzband ◽  
Mehrdad Vasheghani Farahani ◽  
Jinhai Yang ◽  
Bahman Tohidi ◽  
...  

2020 ◽  
Author(s):  
Gang Lei ◽  
Qinzhuo Liao ◽  
Patil Shirish

<p>Global energy demand is expected to grow significantly as the world population and the standard of living increase in the coming decades. As a potential source of energy, gas hydrate, which is a crystalline compound of gas-water mixture formed in stable of high pressure and low temperature, has been intensively investigated in the past few decades. In this work, a new analytical model is derived to study the effect of hydrate saturation on stress-dependent relative permeability behavior of hydrate-bearing sediments. The proposed relative permeability model solves the steady-state Navier-Stokes equations for gas-water two-phase flow in porous media with hydrates. It considers water saturation, hydrate saturation, viscosity ratio and hydrate-growth pattern, and is adequately validated with the experimental results in existing literatures. The model demonstrates that gas-water relative permeability in wall coating hydrates (WC hydrates) is larger than that in pore filling hydrates (PF hydrates). For WC hydrates, water phase relative permeability monotonically decreases as gas saturation increases. However, for PF hydrates, water phase relative permeability firstly increases and then decreases with the increase of gas saturation, which can be explained by the “lubricative” effect of the gas phase that exists between the water phase and hydrates. This work constitutes a comprehensive investigation of stress-dependent relative permeability in deformable hydrate-bearing sediments, which is a key issue for sustainable gas production. It not only provides theoretical foundations for quantifying relative permeability in hydrate-bearing sediments, but also can be used to estimate pore-scale parameters and rock lithology of gas hydrate-bearing sediments using inverse modeling.</p>


1960 ◽  
Vol 38 (2) ◽  
pp. 208-221 ◽  
Author(s):  
D. N. Glew

An experimental study has been made of the saturation pressure – temperature lines of liquid bromochlorodifluoromethane, liquid bromochlorodiflucromethane – water, bromochlorodifluoromethane hydrate – water, and bromochlorodifluoromethane hydrate – ice systems, for which the characteristic equations are given. Two quadruple points for the hydrate systems have been located and solubilities of water in bromochlorodifluoromethane and bromochlorodifluoromethane in water determined. A systematic treatment of gas hydrate saturation pressure data to yield thermodynamic equations is indicated, and the thermodynamic functions for bromochlorodifluoromethane hydrate and its phase reactions are tabulated. Bromochlorodifluoromethane hydrate is shown to be a stoichiometric compound, and its thermodynamic functions are considered in relation to those of other gas hydrates.


2013 ◽  
Vol 275-277 ◽  
pp. 316-321 ◽  
Author(s):  
Jian Zhang ◽  
Yu Guang Ye ◽  
Chang Ling Liu ◽  
Zhong Ming Sun ◽  
Lei Zhang ◽  
...  

The mechanical properties of gas hydrate-bearing sediments are important basic parameters during natural gas hydrate drilling and exploitation. It’s very hard to get and preserve the actual gas hydrate specimens for the measurements of these characteristics. Experimental techniques for mechanical properties of gas hydrate-bearing sediments are essential and unique because of the special high pressure and low temperature conditions for the stability of gas hydrate. Qingdao Institute of Marine Geology has developed an experimental equipment (Chinese National patent No. ZL 2010 2 0253067.3) to study the variation of mechanical properties along with gas hydrate saturation in different sediments. The combination, configuration and advantages of the equipment, as well as some preliminary experimental results were introduced in this article.


2012 ◽  
Vol 446-449 ◽  
pp. 1396-1399
Author(s):  
Ling Dong Li ◽  
Yuan Fang Cheng ◽  
Xiao Jie Sun

As a kind of emerging energy with massive reserves, natural gas hydrates are becoming the hot spot of global research. The elastic properties of gas hydrate bearing sediments (HBS) are the fundamental parameters for gas hydrates exploration and resource evaluations. As the original coring in HBS is difficult and expensive, experimental method is important to study the problem. An acoustic wave in-situ measuring system for HBS was developed. Using the in-situ method, hydrate bearing rock samples of different hydrate saturation were synthesized, of which the supersonic wave measurement was carried out under different confining pressure. According to the elasticity theory, the dynamic elastic parameters were obtained using the measured ultrasonic wave velocity. The results show that compressional and shear waves increase with the confining pressure and hydrate saturation increasing, and so the dynamic elastic modulus is.


Sign in / Sign up

Export Citation Format

Share Document