Effects of surfactant on the molecules of different polarity of solubilization: Based on the study of micellar microscopic morphology mechanism

2022 ◽  
Vol 208 ◽  
pp. 109563
Author(s):  
Chun Feng ◽  
Linghui Sun ◽  
Weidong Liu ◽  
Cancan Chen ◽  
Bowen Li ◽  
...  
2021 ◽  
pp. 1-9
Author(s):  
Qicheng Chen ◽  
Wei Han ◽  
Qiaomu Zhang ◽  
Weishan Liu ◽  
Nanhang Dong

2011 ◽  
Vol 306-307 ◽  
pp. 274-279
Author(s):  
Qing Tao ◽  
Yan Wei Sui ◽  
Sun Zhi ◽  
Wei Song

AlN and TiN thin films are widely used in electronic devices and acoustic material and other fields because of its unique merit, the preparation of nitride thin films by using the arc ion plating has not been a systematic and deep study. The article presents our research procedure which the AlN and TiN thin films are deposited on stainless steel substrate by arc ion plating (AIP). The characteristics of thin films, for example microstructure, morphology, composition analysis and hardness, are examined and analyzed. The results showed that: Droplet-like particles appear in the microstructure of nitride thin films, and the grain size of droplet-like particles in AlN thin films is greater than in TiN thin films. The micro-hardness of nitride films preparation in experiment has improved significantly, and establish firmly basic for extending the application field of nitride film.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Seongmin Yang ◽  
Seungyeob Han ◽  
Yeo-Myeong Yun ◽  
Seoktae Kang

The production of biogas was promoted via direct interspecies electron transfer (DIET) by employing electro-conductive carbon-nanotube hollow-fiber media (CHM) in anaerobic digestion. Experimental results showed a positive effect of CHM presence on CH4 productivity with 34% higher CH4 production rate than that of in the presence of non-electroconductive polymeric hollow fiber media. An increased CH4 production rate was due to the shift in the microbiome with more abundant Pelobacter (10.0%), Geobacter (6.9%), and Methanosaeta (15.7%), which play key roles in promoting CH4 production via syntrophic metabolism associated with DIET. Microscopic morphology analysis, using confocal laser scanning microscopy and scanning electron microscopy, exhibited that several living cells were attached with electro-conductive pili on the CHM surface, thereby facilitated electron transport between microbial cells.


1953 ◽  
Vol 23 (11) ◽  
pp. 1157.2-1158
Author(s):  
John W. Rebuck

RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 109143-109149 ◽  
Author(s):  
Qingyuan Niu ◽  
Yaqing Guo ◽  
Kezheng Gao ◽  
Ziqiang Shao

CIT-Fe3+ colloid can effectively control over the microscopic morphology of the PPy/CNFs aerogel, which exhibited good electrochemical performance.


1969 ◽  
Vol 129 (6) ◽  
pp. 1235-1246 ◽  
Author(s):  
Esther F. Hays

Work has been presented which suggests that thymus epithelial reticular cells are not effective in restoring the microscopic morphology of lymphoid tissues and their immunologic capacities. They function in recruiting precursors of thymus lymphocytes from the host animals to produce an organ which, after it becomes architecturally normal, can reconstitute the defective host. Intact thymus grafts in situ from 10–14 days, but not for shorter periods of time, have been shown to result in a return toward normal of these two parameters. Evidence is offered to show that few dividing cellular components in the lymphoid tissue originate from the thymus remnant grafts, and that a minor cellular component is contributed by the intact grafts. These data support the concept that the structural and functional development of the lymphatic tissue in thymectomized animals is dependent on thymus lymphoid cells and/or their products, and that the epithelial-reticular cells do not have a direct action in peripheral lymphoid reconstitution.


2021 ◽  
Vol 904 ◽  
pp. 506-511
Author(s):  
Liang Chang ◽  
Xue Tao Zhang ◽  
Zhi Juan Zhao ◽  
Yun Yan Peng ◽  
Jing Miao Li ◽  
...  

In this paper, 347H stainless steel of three situation of solution, primary and secondary stabilizing with 0, 12, 24, 48 and 72 h accelerated sensitization heat treatment. The change of sensitization degree with time was studied by metallographic test, double-loop electrochemical potentiodynamic reactivation (DL-EPR) test, intergranular corrosion test and microscopic morphology observation. The result shows that the sensitization degree of the solution material increases rapidly and reaches the maximum value after 12h sensitization heat treatment. After that, it still belonged to severe sensitization situation, but the index gradually decreased. After stabilizing heat treatment, the sensitization degree of the material is lower than the situation of solution. After heat treatment for 48h, the material located on “possible sensitization” range, and the sensitization degree of the secondary stabilized material was always lower than is of the primary. It indicates that the sensitization of materials can not be completely inhibited by stabilizing heat treatment, and other anti-corrosion measures should be considered.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1287 ◽  
Author(s):  
Wenmeng Zhang ◽  
Shaoyun Chen ◽  
Dongyang Chen ◽  
Zhuoliang Ye

Sterically hindered (S)-1,1′-binaphthyl-2,2′-diol had been successfully copolymerized with 4,4′-sulfonyldiphenol and 4,4′-difluorobenzophenone to yield fibrous poly(arylene ether ketone)s (PAEKs) containing various amounts of binaphthyl unit, which was then selectively and efficiently sulfonated using ClSO3H to yield sulfonated poly(arylene ether ketone)s (SPAEKs) with ion exchange capacities (IECs) ranging from 1.40 to 1.89 mmol·g−1. The chemical structures of the polymers were confirmed by 2D 1H–1H COSY NMR and FT-IR. The thermal properties, water uptake, swelling ratio, proton conductivity, oxidative stability and mechanical properties of SPAEKs were investigated in detail. It was found that the conjugated but non-coplanar structure of binaphthyl unit endorsed excellent solubility and film-forming capability to SPAEKs. The SPAEK-50 with an IEC of 1.89 mmol·g−1 exhibited a proton conductivity of 102 mS·cm−1 at 30 °C, much higher than that of the state-of-the-art Nafion N212 membrane and those of many previously reported aromatic analogs, which may be attributed to the likely large intrinsic free volume of SPAEKs created by the highly twisted chain structures and the desirable microscopic morphology. Along with the remarkable water affinity, thermal stabilities and mechanical properties, the SPAEKs were demonstrated to be promising proton exchange membrane (PEM) candidates for potential membrane separations.


1988 ◽  
Vol 101 (2) ◽  
pp. 295-300 ◽  
Author(s):  
S. L. Mawer

SUMMARYThree human volunteer experiments were performed in which river water expected to contain campylobacter organisms was ingested. Despite the ingestion of over 44000 organisms in one experiment, the subject did not suffer any symptoms, nor were campylobacter organisms excreted, nor was an antibody response to the ingested strains detected. The campylobacter organisms ingested resembledCampylobacter jejunion colonial and microscopic morphology but were hippurate negative, and were distinct fromC. coli. These environmental campylobacter strains appear to be non-pathogenic, however they may be mistaken forC. JejuniorC.coliif they are not fully identified.


Sign in / Sign up

Export Citation Format

Share Document