Commensal lactic acid-producing bacteria affect host cellular lipid metabolism through various cellular metabolic pathways: Role of mTOR, FOXO1, and autophagy machinery system

2018 ◽  
Vol 6 (4) ◽  
pp. 215-235 ◽  
Author(s):  
Darab Ghadimi ◽  
Julia Herrmann ◽  
Michael de Vrese ◽  
Knut J. Heller
2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Oliver C. Watkins ◽  
Preben Selvam ◽  
Reshma Appukuttan Pillai ◽  
Victoria K. B. Cracknell-Hazra ◽  
Hannah E. J. Yong ◽  
...  

Abstract Background Fetal docosahexaenoic acid (DHA) supply relies on preferential transplacental transfer, which is regulated by placental DHA lipid metabolism. Maternal hyperglycemia and obesity associate with higher birthweight and fetal DHA insufficiency but the role of placental DHA metabolism is unclear. Methods Explants from 17 term placenta were incubated with 13C-labeled DHA for 48 h, at 5 or 10 mmol/L glucose treatment, and the production of 17 individual newly synthesized 13C-DHA labeled lipids quantified by liquid chromatography mass spectrometry. Results Maternal BMI positively associated with 13C-DHA-labeled diacylglycerols, triacylglycerols, lysophospholipids, phosphatidylcholine and phosphatidylethanolamine plasmalogens, while maternal fasting glycemia positively associated with five 13C-DHA triacylglycerols. In turn, 13C-DHA-labeled phospholipids and triacylglycerols positively associated with birthweight centile. In-vitro glucose treatment increased most 13C-DHA-lipids, but decreased 13C-DHA phosphatidylethanolamine plasmalogens. However, with increasing maternal BMI, the magnitude of the glucose treatment induced increase in 13C-DHA phosphatidylcholine and 13C-DHA lysophospholipids was curtailed, with further decline in 13C-DHA phosphatidylethanolamine plasmalogens. Conversely, with increasing birthweight centile glucose treatment induced increases in 13C-DHA triacylglycerols were exaggerated, while glucose treatment induced decreases in 13C-DHA phosphatidylethanolamine plasmalogens were diminished. Conclusions Maternal BMI and glycemia increased the production of different placental DHA lipids implying impact on different metabolic pathways. Glucose-induced elevation in placental DHA metabolism is moderated with higher maternal BMI. In turn, findings of associations between many DHA lipids with birthweight suggest that BMI and glycemia promote fetal growth partly through changes in placental DHA metabolism.


2010 ◽  
Vol 298 (1) ◽  
pp. E1-E7 ◽  
Author(s):  
Julia Kovsan ◽  
Nava Bashan ◽  
Andrew S. Greenberg ◽  
Assaf Rudich

Autophagy is a major degradative pathway(s) by which intracellular components are delivered into the lysosomes. It is largely implicated in determining cell death and survival because it eliminates unnecessary, damaged, and/or potentially harmful cellular products and organelles and is an important source for nutrients and energy production under conditions of external nutrient deficiency. As such, autophagy has been suggested to contribute to the regulation of carbohydrate and protein metabolism during fasting. Recently, three papers implicated a role for autophagy in cellular lipid metabolism as well. This Perspectives article presents these novel findings in the context of prior studies on the role of autophagy and lysosomes in metabolic and energy regulation, discusses their points of agreement and opposing propositions, and outlines key outstanding questions.


2015 ◽  
Vol 57 (2) ◽  
pp. 399-406 ◽  
Author(s):  
Muhammad Inam Afzal ◽  
Citlalli Celeste González Ariceaga ◽  
Kenza-Amel Boulahya ◽  
Muriel Jacquot ◽  
Stéphane Delaunay ◽  
...  

Author(s):  
Duc-Vinh Pham ◽  
Pil-Hoon Park

Abstract Background Adiponectin, the most abundant adipokine derived from adipose tissue, exhibits a potent suppressive effect on the growth of breast cancer cells; however, the underlying molecular mechanisms for this effect are not completely understood. Fatty acid metabolic reprogramming has recently been recognized as a crucial driver of cancer progression. Adiponectin demonstrates a wide range of metabolic activities for the modulation of lipid metabolism under physiological conditions. However, the biological actions of adiponectin in cancer-specific lipid metabolism and its role in the regulation of cancer cell growth remain elusive. Methods The effects of adiponectin on fatty acid metabolism were evaluated by measuring the cellular neutral lipid pool, free fatty acid level, and fatty acid oxidation (FAO). Colocalization between fluorescent-labeled lipid droplets and LC3/lysosomes was employed to detect lipophagy activation. Cell viability and apoptosis were examined by MTS assay, caspase-3/7 activity measurement, TUNEL assay, and Annexin V binding assay. Gene expression was determined by real time-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. The transcriptional activity of SREBP-1 was examined by a specific dsDNA binding assay. The modulatory roles of SIRT-1 and adiponectin-activated mediators were confirmed by gene silencing and/or using their pharmacological inhibitors. Observations from in vitro assays were further validated in an MDA-MB-231 orthotopic breast tumor model. Results Globular adiponectin (gAcrp) prominently decreased the cellular lipid pool in different breast cancer cells. The cellular lipid deficiency promoted apoptosis by causing disruption of lipid rafts and blocking raft-associated signal transduction. Mechanistically, dysregulated cellular lipid homeostasis by adiponectin was induced by two concerted actions: 1) suppression of fatty acid synthesis (FAS) through downregulation of SREBP-1 and FAS-related enzymes, and 2) stimulation of lipophagy-mediated lipolysis and FAO. Notably, SIRT-1 induction critically contributed to the adiponectin-induced metabolic alterations. Finally, fatty acid metabolic remodeling by adiponectin and the key role of SIRT-1 were confirmed in nude mice bearing breast tumor xenografts. Conclusion This study elucidates the multifaceted role of adiponectin in tumor fatty acid metabolic reprogramming and provides evidence for the connection between its metabolic actions and suppression of breast cancer.


2004 ◽  
Vol 18 (2) ◽  
pp. 81-82 ◽  
Author(s):  
Philip M Sherman

Lactic acid-producing bacteria have long been employed in the preparation of a variety of foods and beverages, and are taken on a regular basis by asymptomatic individuals in many parts of the world in an effort to promote and maintain health. More recently, there has been increasing interest in the role of feeding nonpathogenic, viable bacteria to domesticated animals and humans to prevent and treat a variety of intestinal diseases (1) and extradigestive conditions (2).


2019 ◽  
Vol 20 (2) ◽  
pp. 438 ◽  
Author(s):  
Alejandra Chávez-Carbajal ◽  
Khemlal Nirmalkar ◽  
Ana Pérez-Lizaur ◽  
Fernando Hernández-Quiroz ◽  
Silvia Ramírez-del-Alto ◽  
...  

Obesity is an excessive fat accumulation that could lead to complications like metabolic syndrome. There are reports on gut microbiota and metabolic syndrome in relation to dietary, host genetics, and other environmental factors; however, it is necessary to explore the role of the gut microbiota metabolic pathways in populations like Mexicans, where the prevalence of obesity and metabolic syndrome is high. This study identify alterations of the gut microbiota in a sample of healthy Mexican women (CO), women with obesity (OB), and women with obesity plus metabolic syndrome (OMS). We studied 67 women, characterizing their anthropometric and biochemical parameters along with their gut bacterial diversity by high-throughput DNA sequencing. Our results indicate that in OB or OMS women, Firmicutes was the most abundant bacterial phylum. We observed significant changes in abundances of bacteria belonging to the Ruminococcaceae, Lachnospiraceae, and Erysipelotrichaceae families and significant enrichment of gut bacteria from 16 different taxa that might explain the observed metabolic alterations between the groups. Finally, the predicted functional metagenome of the gut microbiota found in each category shows differences in metabolic pathways related to lipid metabolism. We demonstrate that Mexican women have a particular bacterial gut microbiota characteristic of each phenotype. There are bacteria that potentially explain the observed metabolic differences between the groups, and gut bacteria in OMS and OB conditions carry more genes of metabolic pathways implicated in lipid metabolism.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mergim Ramosaj ◽  
Sofia Madsen ◽  
Vanille Maillard ◽  
Valentina Scandella ◽  
Daniel Sudria-Lopez ◽  
...  

AbstractNeural stem/progenitor cells (NSPCs) generate new neurons throughout adulthood. However, the underlying regulatory processes are still not fully understood. Lipid metabolism plays an important role in regulating NSPC activity: build-up of lipids is crucial for NSPC proliferation, whereas break-down of lipids has been shown to regulate NSPC quiescence. Despite their central role for cellular lipid metabolism, the role of lipid droplets (LDs), the lipid storing organelles, in NSPCs remains underexplored. Here we show that LDs are highly abundant in adult mouse NSPCs, and that LD accumulation is significantly altered upon fate changes such as quiescence and differentiation. NSPC proliferation is influenced by the number of LDs, inhibition of LD build-up, breakdown or usage, and the asymmetric inheritance of LDs during mitosis. Furthermore, high LD-containing NSPCs have increased metabolic activity and capacity, but do not suffer from increased oxidative damage. Together, these data indicate an instructive role for LDs in driving NSPC behaviour.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Brianna Lowey ◽  
Laura Hertz ◽  
Stephan Chiu ◽  
Kristin Valdez ◽  
Qisheng Li ◽  
...  

ABSTRACT Hepatitis C virus (HCV) harnesses host dependencies to infect human hepatocytes. We previously identified a pivotal role of IκB kinase α (IKK-α) in regulating cellular lipogenesis and HCV assembly. In this study, we defined and characterized NF-κB-inducing kinase (NIK) as an IKK-α upstream serine/threonine kinase in IKK-α-mediated proviral effects and the mechanism whereby HCV exploits this innate pathway to its advantage. We manipulated NIK expression in Huh7.5.1 cells through loss- and gain-of-function approaches and examined the effects on IKK-α activation, cellular lipid metabolism, and viral assembly. We demonstrated that NIK interacts with IKK-α to form a kinase complex in association with the stress granules, in which IKK-α is phosphorylated upon HCV infection. Depletion of NIK significantly diminished cytosolic lipid droplet content and impaired HCV particle production. NIK overexpression enhanced HCV assembly, and this process was abrogated in cells deprived of IKK-α, suggesting that NIK acts upstream of IKK-α. NIK abundance was increased in HCV-infected hepatocytes, liver tissues from Alb-uPA/Scid mice engrafted with human hepatocytes, and chronic hepatitis C patients. NIK mRNA contains an miR-122 seed sequence binding site in the 3′ untranslated region (UTR). miR-122 mimic and hairpin inhibitor directly affected NIK levels. In our hepatic models, miR-122 levels were significantly reduced by HCV infection. We demonstrated that HNF4A, a known transcriptional regulator of pri-miR-122, was downregulated by HCV infection. NIK represents a bona fide target of miR-122 whose transcription is downregulated by HCV through reduced HNF4A expression. This effect, together with the sequestering of miR-122 by HCV replication, results in “derepression” of NIK expression to deregulate lipid metabolism. IMPORTANCE Chronic hepatitis C virus (HCV) infection is a major global public health problem. Infection often leads to severe liver injury that may progress to cirrhosis, hepatocellular carcinoma, and death. HCV coopts cellular machineries for propagation and triggers pathological processes in the liver. We previously identified a pivotal role of IKK-α in regulating cellular lipid metabolism and HCV assembly. In this study, we characterized NIK as acting upstream of IKK-α and characterized how HCV exploits this innate pathway to its advantage. Through extensive mechanistic studies, we demonstrated that NIK is a direct target of miR-122, which is regulated at the transcription level by HNF4A, a hepatocyte-specific transcription factor. We show in HCV infection that NIK expression is increased while both HNF4A and miR-122 levels are decreased. NIK represents an important host dependency that links HCV assembly, hepatic lipogenesis, and miRNA biology.


Sign in / Sign up

Export Citation Format

Share Document