Understanding and predicting the global spread of emergent infectious diseases

2014 ◽  
Vol 22 (3) ◽  
Author(s):  
Dirk Brockmann

AbstractThe emergence and global spread of human infectious diseases has become one of the most serious public health threats of the 21st century. Sophisticated computer simulations have become a key tool for understanding and predicting disease spread on a global scale. Combining theoretical insights from nonlinear dynamics, stochastic processes and complex network theory these computational models are becoming increasingly important in the design of efficient mitigation and control strategies and for public health in general.

2018 ◽  
Vol 38 (11) ◽  
pp. 2023-2028
Author(s):  
Rísia L. Negreiros ◽  
José H.H. Grisi-Filho ◽  
Ricardo A. Dias ◽  
Fernando Ferreira ◽  
Valéria S.F. Homem ◽  
...  

ABSTRACT: The analysis of animal movement patterns may help identify farm premises with a potentially high risk of infectious disease introduction. Farm herd sizes and bovine movement data from 2007 in the state of Mato Grosso, Brazil, were analyzed. There are three different biomes in Mato Grosso: the Amazon, Cerrado, and Pantanal. The analysis of the animal trade between and within biomes would enable characterization of the connections between the biomes and the intensity of the internal trade within each biome. We conducted the following analyses: 1) the concentration of cattle on farm premises in the state and in each biome, 2) the number and relative frequency of cattle moved between biomes, and 3) the most frequent purposes for cattle movements. Twenty percent (20%) of the farm premises had 81.15% of the herd population. Those premises may be important not only for the spread of infectious diseases, but also for the implementation of surveillance and control strategies. Most of the cattle movement was intrastate (97.1%), and internal movements within each biome were predominant (88.6%). A high percentage of movement from the Pantanal was to the Cerrado (48.6%), the biome that received the most cattle for slaughter, fattening and reproduction (62.4%, 56.8%, and 49.1% of all movements for slaughter, fattening, and reproduction, respectively). The primary purposes for cattle trade were fattening (43.5%), slaughter (31.5%), and reproduction (22.7%). Presumably, movements for slaughter has a low risk of disease spread. In contrast, movements for fattening and reproduction purposes (66.2% of all movements) may contribute to an increased risk of the spread of infectious diseases.


Author(s):  
Markus Frischhut

This chapter discusses the most important features of EU law on infectious diseases. Communicable diseases not only cross borders, they also often require measures that cross different areas of policy because of different vectors for disease transmission. The relevant EU law cannot be attributed to one sectoral policy only, and thus various EU agencies participate in protecting public health. The key agency is the European Centre for Disease Prevention and Control. Other important agencies include the European Environment Agency; European Food Safety Authority; and the Consumers, Health, Agriculture and Food Executive Agency. However, while integration at the EU level has facilitated protection of the public's health, it also has created potential conflicts among the different objectives of the European Union. The internal market promotes the free movement of products, but public health measures can require restrictions of trade. Other conflicts can arise if protective public health measures conflict with individual human rights. The chapter then considers risk assessment and the different tools of risk management used in dealing with the challenges of infectious diseases. It also turns to the external and ethical perspective and the role the European Union takes in global health.


Eye ◽  
2021 ◽  
Author(s):  
Ashwin Venkatesh ◽  
Ravi Patel ◽  
Simran Goyal ◽  
Timothy Rajaratnam ◽  
Anant Sharma ◽  
...  

AbstractEmerging infectious diseases (EIDs) are an increasing threat to public health on a global scale. In recent times, the most prominent outbreaks have constituted RNA viruses, spreading via droplets (COVID-19 and Influenza A H1N1), directly between humans (Ebola and Marburg), via arthropod vectors (Dengue, Zika, West Nile, Chikungunya, Crimean Congo) and zoonotically (Lassa fever, Nipah, Rift Valley fever, Hantaviruses). However, specific approved antiviral therapies and vaccine availability are scarce, and public health measures remain critical. Patients can present with a spectrum of ocular manifestations. Emerging infectious diseases should therefore be considered in the differential diagnosis of ocular inflammatory conditions in patients inhabiting or returning from endemic territories, and more general vigilance is advisable in the context of a global pandemic. Eye specialists are in a position to facilitate swift diagnosis, improve clinical outcomes, and contribute to wider public health efforts during outbreaks. This article reviews those emerging viral diseases associated with reports of ocular manifestations and summarizes details pertinent to practicing eye specialists.


2020 ◽  
Author(s):  
Vlassis A. Karydis ◽  
Alexandra P. Tsimpidi ◽  
Andrea Pozzer ◽  
Jos Lelieveld

Abstract. The acidity of atmospheric aerosols regulates the particulate mass, composition and toxicity, and has important consequences for public health, ecosystems and climate. Despite these broad impacts, the global distribution and evolution of aerosol acidity are unknown. We used the particular, comprehensive atmospheric multiphase chemistry – climate model EMAC to investigate the main factors that control aerosol acidity, and uncovered remarkable variability and unexpected trends during the past 50 years in different parts of the world. We find that alkaline compounds, notably ammonium, and to a lesser extent crustal cations, buffer the aerosol pH on a global scale. Given the importance of aerosols for the atmospheric energy budget, cloud formation, pollutant deposition and public health, alkaline species hold the key to control strategies for air quality and climate change.


2010 ◽  
Vol 15 (21) ◽  
Author(s):  
E Jelastopulu ◽  
G Merekoulias ◽  
E C Alexopoulos

This study investigates the completeness of the reporting of infectious diseases in the prefecture of Achaia, western Greece in the period of 1999-2004. We collected hospital records relating to infectious diseases retrospectively from three major hospitals in the region and compared the records to corresponding records at the prefectural public health department (PHD). After record-linkage and cross-validation a total of 1,143 notifiable cases were identified in the three hospitals, of which 707 were reported to the PHD of Achaia, resulting in an observed underreporting of infectious diseases of 38% during the study period. At prefecture level, a further 259 cases were notified by other sources, mainly by the fourth hospital of the region not included in our study, resulting in a total of 966 cases reported to the PHD; 73% of these were reported from the three hospitals included in our study, 27% were notified by the fourth hospital not included in our study and less then 0,3% by physicians working in a private practice or health centre. Meningitis (51%), tuberculosis (12%) and salmonellosis (8%) were the most frequently reported diseases followed by hospitalised cases of varicella (7%), brucellosis (6%) and hepatitis (6%). During the study period, clustering of specific diseases like brucellosis, meningitis, mumps, and salmonellosis was observed, indicating possible outbreaks. Our results show that notification system needs to be improved, in order to ensure proper health resources allocation and implementation of focused prevention and control strategies.


2004 ◽  
Vol 12 (03) ◽  
pp. 289-300 ◽  
Author(s):  
S. HSU ◽  
A. ZEE

We develop simple models for the global spread of infectious diseases, emphasizing human mobility via air travel and the variation of public health infrastructure from region to region. We derive formulas relating the total and peak number of infections in two countries to the rate of travel between them and their respective epidemiological parameters.


2020 ◽  
Vol 65 (1) ◽  
pp. 191-208 ◽  
Author(s):  
Oliver J. Brady ◽  
Simon I. Hay

Dengue is an emerging viral disease principally transmitted by the Aedes ( Stegomyia) aegypti mosquito. It is one of the fastest-growing global infectious diseases, with 100–400 million new infections a year, and is now entrenched in a growing number of tropical megacities. Behind this rapid rise is the simple adaptation of Ae. aegypti to a new entomological niche carved out by human habitation. This review describes the expansion of dengue and explores how key changes in the ecology of Ae. aegypti allowed it to become a successful invasive species and highly efficient disease vector. We argue that characterizing geographic heterogeneity in mosquito bionomics will be a key research priority that will enable us to better understand future dengue risk and design control strategies to reverse its global spread.


EDIS ◽  
2018 ◽  
Vol 2018 (2) ◽  
Author(s):  
Patrick Joseph Minogue ◽  
Brent V. Brodbeck ◽  
James H. Miller

Cogongrass (Imperata cylindrica (L.) Beauv.) is a Southeast Asian warm-season perennial grass species that has spread to all continents except Antarctica. It is considered among the worst problematic weeds on a global scale. Control of cogongrass is difficult, especially in forests. This 6-page fact sheet written by Patrick J. Minogue, Brent V. Brodbeck, and James H. Miller and published by the UF/IFAS School of Forest Resources and Conservation presents recommendations for control strategies that will work in mixed pine-hardwood forests and pine forests. http://edis.ifas.ufl.edu/fr411


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Sultanah Alshammari ◽  
Armin Mikler

ObjectiveTo develop a computational model to assess the risk of epidemics in global mass gatherings and evaluate the impact of various measures of prevention and control of infectious diseases.IntroductionGlobal Mass gatherings (MGs) such as Olympic Games, FIFA World Cup, and Hajj (Muslim pilgrimage to Makkah), attract millions of people from different countries. The gathering of a large population in a proximity facilitates transmission of infectious diseases [1]. Attendees arrive from different geographical areas with diverse disease history and immune responses. The associated travel patterns with global events can contribute to a further disease spread affecting a large number of people within a short period and lead to a potential pandemic. Global MGs pose serious health threats and challenges to the hosting countries and home countries of the participants [2]. Advanced planning and disease surveillance systems are required to control health risks in these events. The success of computational models in different areas of public health and epidemiology motivates using these models in MGs to study transmission of infectious diseases and assess the risk of epidemics. Computational models enable simulation and analysis of different disease transmission scenarios in global MGs. Epidemic models can be used to evaluate the impact of various measures of prevention and control of infectious diseases.MethodsThe annual event of the Hajj is selected to illustrate the main aspects of the proposed model and to address the associated challenges. Every year, more than two million pilgrims from over 186 countries arrive in Makkah to perform Hajj with the majority arriving by air. Foreign pilgrims can stay at one of the holy cities of Makkah and Madinah up to 30-35 days prior the starting date of the Hajj. The long duration of the arrival phase of the Hajj allows a potential epidemic to proceed in the population of international pilgrims. Stochastic SEIR (Susceptible−Exposed−Infected−Recovered) agent-based model is developed to simulate the disease transmission among pilgrims. The agent-based model is used to simulate pilgrims and their interactions during the various phases of the Hajj. Each agent represents a pilgrim and maintains a record of demographic data (gender, country of origin, age), health data (infectivity, susceptibility, number of days being exposed or infected), event related data (location, arrival date and time), and precautionary or health-related behaviors.Each pilgrim can be either healthy but susceptible to a disease, exposed who are infected but cannot transmit the infection, or infectious (asymptomatic or symptomatic) who are infected and can transmit the disease to other susceptibles. Exposed individuals transfer to the infectious compartment after 1/α days, and infectious individuals will recover and gain immunity to that disease after 1/γ days. Where α is the latent period and γ is the infectious period. Moving susceptible individuals to exposed compartment depends on a successful disease transmission given a contact with an infectious individual. The disease transmission rate is determined by the contact rate and thetransmission probability per contact. Contact rate and mixing patterns are defined by probabilistic weights based on the features of infectious pilgrims and the duration and setting of the stage where contacts are taking place. The initial infections are seeded in the population using two scenarios (Figure 1) to measure the effects of changing, the timing for introducing a disease into the population and the likelihood that a particular flight will arrive with one or more infected individuals.ResultsThe results showed that the number of initial infections is influenced by increasing the value of λ and selecting starting date within peak arrival days. When starting from the first day, the average size of the initial infectious ranges from 0.05% to 1% of the total arriving pilgrims. Using the SEIR agent-based model, a simulation of the H1N1 Influenza epidemic was completed for the 35-days arrival stage of the Hajj. The epidemic is initiated with one infectious pilgrim per flight resulting in infected 0.5% of the total arriving pilgrims. As pilgrims spend few hours at the airport, the results obtained from running the epidemic model showed only new cases of susceptible individuals entering the exposed state in a range of 0.20% to 0.35% of total susceptibles. The number of new cases is reduced by almost the same rate of the number of infectious individuals following precautionary behaviors.ConclusionsA data-driven stochastic SEIR agent-based model is developed to simulate disease spread at global mass gatherings. The proposed model can provide initial indicators of infectious disease epidemic at these events and evaluate the possible effects of intervention measures and health-related behaviors. The proposed model can be generalized to model the spread of various diseases in different mass gatherings, as it allows different factors to vary and entered as parameters.References1. Memish ZA, Stephens GM, Steffen R, Ahmed QA. Emergence of medicine for mass gatherings: lessons from the Hajj. The Lancet infectious diseases. 2012 Jan 31;12(1):56-65.2. Chowell G, Nishiura H, Viboud C. Modeling rapidly disseminating infectious disease during mass gatherings. BMC medicine. 2012 Dec 7;10(1):159.


Sign in / Sign up

Export Citation Format

Share Document