Control of the near magnetic field pattern uniformity inside metamaterial-inspired volumetric resonators

Author(s):  
Aigerim Jandaliyeva ◽  
Viktor Puchnin ◽  
Alexey Slobozhanyuk ◽  
Alena Shchelokova
Keyword(s):  
2001 ◽  
Vol 674 ◽  
Author(s):  
Norio Ota ◽  
Hiroyuki Awano ◽  
Manabu Tani ◽  
Susumu Imai

ABSTRACTMagnetic Amplifying Magneto-Optical System (MAMMOS) shows human brain like memory behavior. Magnetic field and laser power have threshold to recover the stored memory like the human response of remembering. MAMMOS also has a feature to amplify very small recorded signals like our recovery of memory, e.g. fifty years ago episode.By adding the meaningful information on the magnetic field pattern, we can get some correlation between our memory and external stimulation. Such scheme is named as “the Active readout MAMMOS” which is analogues to the human process of remembering the memory.If the applied field pattern and timing phase just coincide with stored information, there occurs the coherent amplification of MAMMOS signal. We can utilize such phenomena as the trigger of “Memory Association”.


2012 ◽  
Vol 10 (H16) ◽  
pp. 86-89 ◽  
Author(s):  
J. Todd Hoeksema

AbstractThe almost stately evolution of the global heliospheric magnetic field pattern during most of the solar cycle belies the intense dynamic interplay of photospheric and coronal flux concentrations on scales both large and small. The statistical characteristics of emerging bipoles and active regions lead to development of systematic magnetic patterns. Diffusion and flows impel features to interact constructively and destructively, and on longer time scales they may help drive the creation of new flux. Peculiar properties of the components in each solar cycle determine the specific details and provide additional clues about their sources. The interactions of complex developing features with the existing global magnetic environment drive impulsive events on all scales. Predominantly new-polarity surges originating in active regions at low latitudes can reach the poles in a year or two. Coronal holes and polar caps composed of short-lived, small-scale magnetic elements can persist for months and years. Advanced models coupled with comprehensive measurements of the visible solar surface, as well as the interior, corona, and heliosphere promise to revolutionize our understanding of the hierarchy we call the solar magnetic field.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Sophie Charpentier ◽  
Luca Galletti ◽  
Gunta Kunakova ◽  
Riccardo Arpaia ◽  
Yuxin Song ◽  
...  

Abstract Topological superconductivity is central to a variety of novel phenomena involving the interplay between topologically ordered phases and broken-symmetry states. The key ingredient is an unconventional order parameter, with an orbital component containing a chiral p x  + ip y wave term. Here we present phase-sensitive measurements, based on the quantum interference in nanoscale Josephson junctions, realized by using Bi2Te3 topological insulator. We demonstrate that the induced superconductivity is unconventional and consistent with a sign-changing order parameter, such as a chiral p x  + ip y component. The magnetic field pattern of the junctions shows a dip at zero externally applied magnetic field, which is an incontrovertible signature of the simultaneous existence of 0 and π coupling within the junction, inherent to a non trivial order parameter phase. The nano-textured morphology of the Bi2Te3 flakes, and the dramatic role played by thermal strain are the surprising key factors for the display of an unconventional induced order parameter.


2020 ◽  
Vol 1461 ◽  
pp. 012075
Author(s):  
E. Kretov ◽  
A. Shchelokova ◽  
A. Slobozhanyuk

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2704 ◽  
Author(s):  
Imran Ashraf ◽  
Soojung Hur ◽  
Yongwan Park

Wide expansion of smartphones triggered a rapid demand for precise localization that can meet the requirements of location-based services. Although the global positioning system is widely used for outdoor positioning, it cannot provide the same accuracy for the indoor. As a result, many alternative indoor positioning technologies like Wi-Fi, Bluetooth Low Energy (BLE), and geomagnetic field localization have been investigated during the last few years. Today smartphones possess a rich variety of embedded sensors like accelerometer, gyroscope, and magnetometer that can facilitate estimating the current location of the user. Traditional geomagnetic field-based fingerprint localization, although it shows promising results, it is limited by the fact that various smartphones have embedded magnetic sensors from different manufacturers and the magnetic field strength that is measured from these smartphones vary significantly. Consequently, the localization performance from various smartphones is different even when the same localization approach is used. So devising an approach that can provide similar performance with various smartphones is a big challenge. Contrary to previous works that build the fingerprint database from the geomagnetic field data of a single smartphone, this study proposes using the geomagnetic field data collected from multiple smartphones to make the geomagnetic field pattern (MP) database. Many experiments are carried out to analyze the performance of the proposed approach with various smartphones. Additionally, a lightweight threshold technique is proposed that can detect user motion using the acceleration data. Results demonstrate that the localization performance for four different smartphones is almost identical when tested with the database made using the magnetic field data from multiple smartphones than that of which considers the magnetic field data from only one smartphone. Moreover, the performance comparison with previous research indicates that the overall performance of smartphones is improved.


2015 ◽  
Vol 08 (08) ◽  
pp. 531-543 ◽  
Author(s):  
Lukasz M. Karbowski ◽  
Nirosha J. Murugan ◽  
Stanley A. Koren ◽  
Michael A. Persinger

2020 ◽  
Author(s):  
Hanying Wei ◽  
Christopher Russell ◽  
Yingjuan Ma ◽  
Michele Dougherty

<p>Titan has a thick atmosphere, the top of which is ionized and interacts with its plasma environment, i.e. usually the Saturnian magnetospheric plasma, but occasionally the magnetosheath or even the solar wind plasma. When the upstream plasma flow encounters Titan, the plasma slows down and diverts around Titan, and the magnetic field slowly diffuses into Titan’s ionosphere and induces currents in the ionosphere. The resulting magnetic field pattern is that, in the upstream of Titan, field lines drape around it, and in the downstream, the field lines stretch tail-like. Gradually these external fields penetrate into the lower atmosphere and the interior of Titan, and induce currents in any conductive layer if a conductive layer does indeed exist in Titan’s interior. This internally induced current acts to exclude the penetrated field. Both the internally induced field and the externally induced ionospheric field have strength and orientation variable with certain time scales because they are responses to the penetrated external field. The Cassini observations are a sum of fields from both internal and external sources. In this paper, we review the low altitude observations from all Cassini Titan flybys and examine the different behaviors of the external and internal fields, which ultimately provide an upper limit to Titan’s internal field leading to indications for Titan’s interior.</p>


Sign in / Sign up

Export Citation Format

Share Document