Chronic benzylamine administration in the drinking water improves glucose tolerance, reduces body weight gain and circulating cholesterol in high-fat diet-fed mice

2010 ◽  
Vol 61 (4) ◽  
pp. 355-363 ◽  
Author(s):  
Zsuzsa Iffiú-Soltész ◽  
Estelle Wanecq ◽  
Almudena Lomba ◽  
Maria P. Portillo ◽  
Federica Pellati ◽  
...  
2020 ◽  
Vol 150 (8) ◽  
pp. 2101-2111 ◽  
Author(s):  
Lili Tian ◽  
Hongmei Ning ◽  
Weijuan Shao ◽  
Zhuolun Song ◽  
Yasaman Badakhshi ◽  
...  

ABSTRACT Background Dietary polyphenols including anthocyanins target multiple organs. Objective We aimed to assess the involvement of glucagon-like peptide 1 (GLP-1), leptin, insulin and fibroblast growth factor 21 (FGF21) in mediating metabolic beneficial effects of purified anthocyanin cyanidin-3-glucoside (Cy3G). Methods Intestinal proglucagon gene (Gcg; encoding GLP-1) and liver Fgf21 expression were assessed in 6-wk-old male C57BL-6J mice fed a low-fat-diet (LFD; 10% of energy from fat), alone or with 1.6 mg Cy3G/L in drinking water for 3 wk [experiment (Exp.) 1; n = 5/group]. Similar mice were fed the LFD or a high-fat diet (HFD; 60% energy from fat) with or without Cy3G for 20 wk. Half of the mice administered Cy3G also received 4 broad-spectrum antibiotics (ABs) in drinking water between weeks 11 and 14, for a total of 6 groups (n = 8/group). Metabolic tolerance tests were conducted between weeks 2 and 16. Relevant hormone gene expression and plasma hormone concentrations were assessed mainly at the end of 20 wk (Exp. 2). Results In Exp. 1, Cy3G administration increased ileal but not colonic Gcg level by 2-fold (P < 0.05). In Exp. 2, Cy3G attenuated HFD-induced body-weight gain (20.3% at week 16), and improved glucose tolerance (26.5% at week 15) but not insulin tolerance. Although Cy3G had no effect on glucose tolerance in LFD mice, LFD/Cy3G/AB mice showed better glucose tolerance than LFD/Cy3G mice (23%). In contrast, HFD/Cy3G/AB mice showed worse glucose tolerance compared with HFD/Cy3G mice (15%). Beneficial effects of Cy3G in HFD mice were not associated with changes in plasma leptin, insulin or GLP-1 concentrations. However, Cy3G increased hepatic Fgf21 expression in mice in Exp. 1 by 4-fold and attenuated Fgf21 overexpression in HFD mice (Exp. 2, 22%), associated with increased expression of genes that encode FGFR1 and β-klotho (>3-fold, P < 0.05). Conclusions Dietary Cy3G may reduce body weight and exert metabolic homeostatic effects in mice via changes in hepatic FGF21.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 669-669
Author(s):  
Armando Tovar ◽  
Monica Sanchez-Tapia ◽  
Daniela Moreno ◽  
Guillermo Ordaz ◽  
Martha Guevara ◽  
...  

Abstract Objectives Several studies have demonstrated that the consumption of soy protein decreases LDL-cholesterol, improves insulin sensitivity and attenuates body weight gain. Also, soy protein consumption can modify the gut microbiota, however it has not been established whether the changes in gut microbiota are in part responsible of the health effects of soy protein. Thus, the aim of the present study was to understand whether the metabolic effects of soy protein are reduced by the use of an antibiotic treatment. Methods Rats were fed for 16 weeks with one of the 4 experimental diets: 1) Casein control diet (C), 2) Soy protein diet (S), 3) C high-fat diet, and 4) S high-fat diet. Each group was sub-divided at the end of the 16 weeks in 2 groups. One subgroup continue with the same diet, and the other received the antibiotic treatment (Ampicillin/Neomycin) for 4 weeks. During the study body weight, food intake, body composition, energy expenditure and glucose tolerance were measured. Fecal samples were collected before and after the antibiotic treatment to determine the gut microbiota using the Illumina platform. At the end of the study blood samples were obtained to measure several biochemical variables. Also, liver and adipose tissue samples were obtained to assess the abundance of mRNA and proteins involved in lipid, glucose and thermogenesis. Results Rats fed S or S high fat diet had significant lower body weight gain, body fat, energy expenditure, glucose tolerance, blood lipids, increased expression of thermogenic genes and decreased serum lipopolisacharide than the control or high fat groups fed C diets. The antibiotic treatment abolished the health benefits observed in rats fed the S diets, particularly energy expenditure and weight gain. These changes were associated with changes in the gut microbiota, since S consumption increased the abundance of the Akkermansia and Bifidobacterium genus. This effect on the gut microbiota was prevented by the antibiotic treatment and rats developed metabolic endotoxemia. Finally, the antibiotic treatment reduced the expression of thermogenic genes, particularly in rats fed S high fat diet. Conclusions This study indicates that the beneficial effects of soy protein consumption on health are significantly dependent on the gut microbiota. Funding Sources CONACYT, INCMNSZ.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e33858 ◽  
Author(s):  
Amandine Everard ◽  
Lucie Geurts ◽  
Marie Van Roye ◽  
Nathalie M. Delzenne ◽  
Patrice D. Cani

1999 ◽  
Vol 58 (4) ◽  
pp. 773-777 ◽  
Author(s):  
John E. Blundell ◽  
John Cooling

It is now widely accepted that obesity develops by way of genetic mechanisms conferring specific dispositions which interact with strong environmental pressures. It is also accepted that certain dispositions constitute metabolic risk factors for weight gain. It is less well accepted that certain patterns of behaviour (arising from biological demands or environmental influences) put individuals at risk of developing a positive energy balance and weight gain (behavioural risk factors). Relevant patterns of behaviour include long-lasting habits for selecting and eating particular types of foods. Such habits define two distinct groups characterized as high-fat (HF) and low-fat (LF) phenotypes. These habits are important because of the attention given to dietary macronutrients in body-weight gain and the worldwide epidemic of obesity. Considerable evidence indicates that the total amount of dietary fat consumed remains the most potent food-related risk factor for weight gain. However, although habitual intake of a high-fat diet is a behavioural risk factor for obesity, it does not constitute a biological inevitability. A habitual low-fat diet does seem to protect against the development of obesity, but a high-fat diet does not guarantee that an individual will be obese. Although obesity is much more prevalent among HF than LF, some HF are lean with BMI well within the normal range. The concept of 'different routes to obesity' through a variety of nutritional scenarios can be envisaged, with predisposed individuals varying in their susceptibility to different dietary inputs. In a particular subgroup of individuals (young adult males) HF and LF displayed quite different profiles of appetite control, response to nutrient challenges and physiological measures, including BMR, RQ, heart rate, plasma leptin levels and thermogenic responses to fat and carbohydrate meals. These striking differences suggest that HF and LF can be used as a conceptual tool to investigate the relationship between biology and the environment (diet) in the control of body weight.


Sign in / Sign up

Export Citation Format

Share Document