Comparison of the anti-inflammatory effects of Sinapis alba and Brassica juncea in mouse models of inflammation

Phytomedicine ◽  
2018 ◽  
Vol 50 ◽  
pp. 196-204 ◽  
Author(s):  
Yan-Fang Xian ◽  
Zhen Hu ◽  
Siu-Po Ip ◽  
Jian-Nan Chen ◽  
Zi-Ren Su ◽  
...  
Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 361
Author(s):  
Margaux Sambon ◽  
Anna Gorlova ◽  
Alice Demelenne ◽  
Judit Alhama-Riba ◽  
Bernard Coumans ◽  
...  

Thiamine precursors, the most studied being benfotiamine (BFT), have protective effects in mouse models of neurodegenerative diseases. BFT decreased oxidative stress and inflammation, two major characteristics of neurodegenerative diseases, in a neuroblastoma cell line (Neuro2a) and an immortalized brain microglial cell line (BV2). Here, we tested the potential antioxidant and anti-inflammatory effects of the hitherto unexplored derivative O,S-dibenzoylthiamine (DBT) in these two cell lines. We show that DBT protects Neuro2a cells against paraquat (PQ) toxicity by counteracting oxidative stress at low concentrations and increases the synthesis of reduced glutathione and NADPH in a Nrf2-independent manner. In BV2 cells activated by lipopolysaccharides (LPS), DBT significantly decreased inflammation by suppressing translocation of NF-κB to the nucleus. Our results also demonstrate the superiority of DBT over thiamine and other thiamine precursors, including BFT, in all of the in vitro models. Finally, we show that the chronic administration of DBT arrested motor dysfunction in FUS transgenic mice, a model of amyotrophic lateral sclerosis, and it reduced depressive-like behavior in a mouse model of ultrasound-induced stress in which it normalized oxidative stress marker levels in the brain. Together, our data suggest that DBT may have therapeutic potential for brain pathology associated with oxidative stress and inflammation by novel, coenzyme-independent mechanisms.


2020 ◽  
Vol 258 ◽  
pp. 112936 ◽  
Author(s):  
Ahlem Karbab ◽  
Kamel Mokhnache ◽  
Soraya Ouhida ◽  
Noureddine Charef ◽  
Farida Djabi ◽  
...  

2020 ◽  
Author(s):  
Faisal Aziz ◽  
Mingxia Xin ◽  
Yunfeng Gao ◽  
Josh Monts ◽  
Kjersten Monson ◽  
...  

Abstract Background: Gastric cancer risk evolves over time due to environmental, dietary, and lifestyle changes including Helicobacter pylori (H. pylori) infection and consumption of hot peppers (i.e. capsaicin). H. pylori infection promotes gastric mucosal injury in the early phase of capsaicin exposure. In addition, capsaicin consumption is reported to suppress immune function and increase host susceptibility to microbial infection. This relationship suggests a need to investigate the mechanism of how both H. pylori infection and capsaicin contribute to gastric inflammation and lead to gastric cancer. No previous experimental animal models have been developed to study this dual association. Here we developed a series of mouse models that progress from chronic gastritis to gastric cancer. C57-Balb/c mice were infected with the H. pylori (SS1) strain and then fed capsaicin (0.05% or 0.2g/kg/day) or not. Consequently, we investigated the association between H. pylori infection and capsaicin consumption during the initiation of gastric inflammation and the later development of gastric cancer. Tumor size and phenotype were analyzed to determine the molecular mechanism driving the shift from gastritis to stomach cancer. Gastric carcinogenesis was also prevented in these models using the ornithine decarboxylase inhibitor DFMO (2-difluoromethylornithine). Results: This study provides evidence showing that a combination of H. pylori infection and capsaicin consumption leads to gastric carcinogenesis. The transition from chronic gastritis to gastric cancer is mediated through interleukin-6 (IL-6) stimulation with an incidence rate of 50%. However, this progression can be prevented by treating with anti-inflammatory agents. In particular, we used DFMO to prevent gastric tumorigenesis by reducing inflammation and promoting recovery of disease-free stasis. The anti-inflammatory role of DFMO highlights the injurious effect of inflammation in gastric cancer development and the need to reduce gastric inflammation for cancer prevention. Conclusions: Overall, these mouse models provide reliable systems for analyzing the molecular mechanisms and synergistic effects of H. pylori and capsaicin on human cancer etiology. Accordingly, preventive measures like reduced capsaicin consumption, H. pylori clearance, and DFMO treatment can lessen gastric cancer incidence. Lastly, anti-inflammatory agents like DFMO can play important roles in prevention of inflammation-associated gastric cancer.


MedChemComm ◽  
2018 ◽  
Vol 9 (6) ◽  
pp. 1076-1082 ◽  
Author(s):  
Mohammad Abdel-Halim ◽  
Ashraf H. Abadi ◽  
Matthias Engel

A new focused library of PKCζ inhibitors was synthesized, leading to the identification of compound2h. Owing to its improved cellular potency in human and murine cell lines, this new lead compound opens up the possibility to evaluate allosteric PKCζ inhibitors in rat or mouse models.


Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 489 ◽  
Author(s):  
L’Hocine ◽  
Pitre ◽  
Achouri

Currently, information on the allergens profiles of different mustard varieties is rather scarce. Therefore, the objective of this study was to assess protein profiles and immunoglobulin E (IgE)-binding patterns of selected Canadian mustard varieties. Optimization of a non-denaturing protein extraction from the seeds of selected mustard varieties was first undertaken, and the various extracts were quantitatively and qualitatively analyzed by means of protein recovery determination and protein profiling. The IgE-binding patterns of selected mustard seeds extracts were assessed by immunoblotting using sera from mustard sensitized and allergic individuals. In addition to the known mustard allergens—Sin a 2 (11S globulins), Sin a 1, and Bra j 1 (2S albumins)—the presence of other new IgE-binding protein bands was revealed from both Sinapis alba and Brassica juncea varieties. Mass spectrometry (MS) analysis of the in-gel digested IgE-reactive bands identified the unknown ones as being oleosin, β-glucosidase, enolase, and glutathione-S transferase proteins. A bioinformatic comparison of the amino acid sequence of the new IgE-binding mustard proteins with those of know allergens revealed a number of strong homologies that are highly relevant for potential allergic cross-reactivity. Moreover, it was found that Sin a 1, Bra j 1, and cruciferin polypeptides exhibited a stronger IgE reactivity under non-reducing conditions in comparison to reducing conditions, demonstrating the recognition of conformational epitopes. These results further support the utilization of non-denaturing extraction and analysis conditions, as denaturing conditions may lead to failure in the detection of important immunoreactive epitopes.


2013 ◽  
Vol 23 (9-10) ◽  
pp. 799
Author(s):  
D. Miglietta ◽  
C. Sciorati ◽  
C. De Palma ◽  
E Ongini ◽  
E. Clementi

1996 ◽  
Vol 115 (6) ◽  
pp. 480-483 ◽  
Author(s):  
K. Gaikwad ◽  
P. B. Kirti ◽  
A. Sharma ◽  
S. Prakash ◽  
V. L. Chopra

Sign in / Sign up

Export Citation Format

Share Document