scholarly journals Diet-induced obesity resistance of adult female mice selectively bred for increased wheel-running behavior is reversed by single perinatal exposure to a high-energy diet

2016 ◽  
Vol 157 ◽  
pp. 246-257 ◽  
Author(s):  
Stefano Guidotti ◽  
Neele Meyer ◽  
Ewa Przybyt ◽  
Anton J.W. Scheurink ◽  
Martin C. Harmsen ◽  
...  
2008 ◽  
Vol 294 (2) ◽  
pp. R290-R301 ◽  
Author(s):  
Christa M. Patterson ◽  
Ambrose A. Dunn-Meynell ◽  
Barry E. Levin

We assessed the effect of early-onset exercise as a means of preventing childhood obesity using juvenile male rats selectively bred to develop diet-induced obesity (DIO) or to be diet resistant (DR) when fed a 31% fat high-energy diet. Voluntary wheel running begun at 36 days of age selectively reduced adiposity in DIO vs. DR rats. Other 4-wk-old DIO rats fed a high-energy diet and exercised (Ex) for 13 wk increased their core temperature, gained 22% less body weight, and had 39% lighter fat pads compared with sedentary (Sed) rats. When wheels were removed after 6 wk (6 wk Ex/7 wk Sed), rats gained less body weight over the next 7 wk than Sed rats and still had comparable adipose pad weights to 13-wk-exercised rats. In fact, only 3 wk of exercise sufficed to prevent obesity for 10 wk after wheel removal. Terminally, the 6-wk-Ex/7-wk-Sed rats had a 55% increase in arcuate nucleus proopiomelanocortin mRNA expression vs. Sed rats, suggesting that this contributed to their sustained obesity resistance. Finally, when Sed rats were calorically restricted for 6 wk to weight match them to Ex rats (6 wk Rstr/7 wk Al), they increased their intake and body weight when fed ad libitum and, after 7 wk more, had higher leptin levels and adiposity than Sed rats. Thus, early-onset exercise may favorably alter, while early caloric restriction may unfavorably influence, the development of the hypothalamic pathways controlling energy homeostasis during brain development.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Annalise N. vonderEmbse ◽  
Sarah E. Elmore ◽  
Kyle B. Jackson ◽  
Beth A. Habecker ◽  
Katherine E. Manz ◽  
...  

Abstract Background Exposure to the bioaccumulative pesticide dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyldichloroethylene (DDE) has been associated with increased risk of insulin resistance and obesity in humans and experimental animals. These effects appear to be mediated by reduced brown adipose tissue (BAT) thermogenesis, which is regulated by the sympathetic nervous system. Although the neurotoxicity of DDT is well-established, whether DDT alters sympathetic innervation of BAT is unknown. We hypothesized that perinatal exposure to DDT or DDE promotes thermogenic dysfunction by interfering with sympathetic regulation of BAT thermogenesis. Methods Pregnant C57BL/6 J mice were administered environmentally relevant concentrations of DDTs (p,p’-DDT and o,p’-DDT) or DDE (p,p’-DDE), 1.7 mg/kg and 1.31 mg/kg, respectively, from gestational day 11.5 to postnatal day 5 by oral gavage, and longitudinal body temperature was recorded in male and female offspring. At 4 months of age, metabolic parameters were measured in female offspring via indirect calorimetry with or without the β3 adrenergic receptor agonist, CL 316,243. Immunohistochemical and neurochemical analyses of sympathetic neurons innervating BAT were evaluated. Results We observed persistent thermogenic impairment in adult female, but not male, mice perinatally exposed to DDTs or p,p’-DDE. Perinatal DDTs exposure significantly impaired metabolism in adult female mice, an effect rescued by treatment with CL 316,243 immediately prior to calorimetry experiments. Neither DDTs nor p,p’-DDE significantly altered BAT morphology or the concentrations of norepinephrine and its metabolite DHPG in the BAT of DDTs-exposed mice. However, quantitative immunohistochemistry revealed a 20% decrease in sympathetic axons innervating BAT in adult female mice perinatally exposed to DDTs, but not p,p’-DDE, and 48 and 43% fewer synapses in stellate ganglia of mice exposed to either DDTs or p,p’-DDE, respectively, compared to control. Conclusions These data demonstrate that perinatal exposure to DDTs or p,p’-DDE impairs thermogenesis by interfering with patterns of connectivity in sympathetic circuits that regulate BAT. Graphical abstract


2010 ◽  
Vol 32 (2) ◽  
pp. 234-239 ◽  
Author(s):  
Jean-Baptiste Braquenier ◽  
Etienne Quertemont ◽  
Ezio Tirelli ◽  
Jean-Christophe Plumier

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 499
Author(s):  
Kalpana D. Acharya ◽  
Hye L. Noh ◽  
Madeline E. Graham ◽  
Sujin Suk ◽  
Randall H. Friedline ◽  
...  

A decrease in ovarian estrogens in postmenopausal women increases the risk of weight gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly, E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. Moreover, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore, Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated, with body weight and fat mass. These results suggest that changes in gut epithelial barrier and specific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic dysregulation. These findings provide support for the gut microbiota as a therapeutic target for treating estrogen-dependent metabolic disorders in women.


Endocrinology ◽  
2006 ◽  
Vol 147 (12) ◽  
pp. 5826-5834 ◽  
Author(s):  
Shoshana Yakar ◽  
Nomeli P. Nunez ◽  
Patricia Pennisi ◽  
Pnina Brodt ◽  
Hui Sun ◽  
...  

Obesity increases the risk of many cancers in both males and females. This study describes a link between obesity, obesity-associated metabolic alterations, and the risk of developing cancer in male and female mice. The goal of this study was to evaluate the relationship between gender and obesity and to determine the role of estrogen status in obese females and its effect on tumor growth. We examined the susceptibility of C57BL/6 mice to diet-induced obesity, insulin resistance/glucose intolerance, and tumors. Mice were injected sc with one of two tumorigenic cell lines, Lewis lung carcinoma, or mouse colon 38-adenocarcinoma. Results show that tumor growth rate was increased in obese mice vs. control mice irrespective of the tumor cell type. To investigate the effect of estrogen status on tumor development in obese females, we compared metabolic parameters and tumor growth in ovariectomized (ovx) and intact obese female mice. Obese ovx female mice developed insulin resistance and glucose intolerance similar to that observed in obese males. Our results demonstrate that body adiposity increased in ovx females irrespective of the diet administered and that tumor growth correlated positively with body adiposity. Overall, these data point to more rapid tumor growth in obese mice and suggest that endogenous sex steroids, together with diet, affect adiposity, insulin sensitivity, and tumor growth in female mice.


2013 ◽  
Vol 304 (12) ◽  
pp. E1321-E1330 ◽  
Author(s):  
Kazunari Nohara ◽  
Rizwana S. Waraich ◽  
Suhuan Liu ◽  
Mathieu Ferron ◽  
Aurélie Waget ◽  
...  

Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.


2007 ◽  
Vol 59 (5) ◽  
pp. 1245-1249 ◽  
Author(s):  
E. Ferreira ◽  
A.E. Silva ◽  
R. Serakides ◽  
A.E.S. Gomes ◽  
G.D. Cassali

It is described the elaboration of a protocol to induce hyperthyroidism and hypothyroidism in mice by administrating thyroxin and propylthiouracil, respectively, in the drinking water. The drugs were administered to adult female mice of the Swiss strain for 30 days in order to obtain a systemic status of thyroid dysfunction. The induction of hyperthyroidism and hypothyroidism in the animals was confirmed by the histomorphological analysis of the thyroid in the end of the experiment, when the state of gland dysfunction in the animals submitted to the treatment was observed.


Sign in / Sign up

Export Citation Format

Share Document