scholarly journals Surfactant-dependent contact line dynamics and droplet spreading on textured substrates: Derivations and computations

2021 ◽  
pp. 133067
Author(s):  
Yuan Gao ◽  
Jian-Guo Liu
Author(s):  
JIANG YAN SHAO ◽  
CHANG SHU ◽  
YONG TIAN CHEW

A hybrid phase-field based lattice Boltzmann method (LBM) is proposed in this paper to simulate the contact line dynamics. The flow field is obtained through the lattice Boltzmann equation (LBE). Concurrently, the interface capturing is accomplished by directly solving Cahn-Hilliard equation, which is the governing equation of interface evolution. A symmetric spatial discretization scheme is adopted to enhance the stability. Compared with the conventional algorithms which solve two sets of LBEs, the present method has several advantages such as reduction of the number of variables in the solution process, decoupling the mobility with relaxation time and enabling a more direct manner to implement wetting boundary conditions. The proposed algorithm is first validated through recovering the analytical profile of a surface layer. It is then applied to simulate droplet spreading on surfaces with different wettability.


2015 ◽  
Vol 115 (3) ◽  
Author(s):  
Amir Alizadeh Pahlavan ◽  
Luis Cueto-Felgueroso ◽  
Gareth H. McKinley ◽  
Ruben Juanes

2013 ◽  
Vol 715 ◽  
pp. 283-313 ◽  
Author(s):  
Yi Sui ◽  
Peter D. M. Spelt

AbstractUsing a slip-length-based level-set approach with adaptive mesh refinement, we have simulated axisymmetric droplet spreading for a dimensionless slip length down to $O(1{0}^{\ensuremath{-} 4} )$. The main purpose is to validate, and where necessary improve, the asymptotic analysis of Cox (J. Fluid Mech., vol. 357, 1998, pp. 249–278) for rapid droplet spreading/dewetting, in terms of the detailed interface shape in various regions close to the moving contact line and the relation between the apparent angle and the capillary number based on the instantaneous contact-line speed, $\mathit{Ca}$. Before presenting results for inertial spreading, simulation results are compared in detail with the theory of Hocking & Rivers (J. Fluid Mech., vol. 121, 1982, pp. 425–442) for slow spreading, showing that these agree very well (and in detail) for such small slip-length values, although limitations in the theoretically predicted interface shape are identified; a simple extension of the theory to viscous exterior fluids is also proposed and shown to yield similar excellent agreement. For rapid droplet spreading, it is found that, in principle, the theory of Cox can predict accurately the interface shapes in the intermediate viscous sublayer, although the inviscid sublayer can only be well presented when capillary-type waves are outside the contact-line region. However, $O(1)$ parameters taken to be unity by Cox must be specified and terms be corrected to ${\mathit{Ca}}^{+ 1} $ in order to achieve good agreement between the theory and the simulation, both of which are undertaken here. We also find that the apparent angle from numerical simulation, obtained by extrapolating the interface shape from the macro region to the contact line, agrees reasonably well with the modified theory of Cox. A simplified version of the inertial theory is proposed in the limit of negligible viscosity of the external fluid. Building on these results, weinvestigate the flow structure near the contact line, the shear stress and pressure along the wall, and the use of the analysis for droplet impact and rapid dewetting. Finally, we compare the modified theory of Cox with a recent experiment for rapid droplet spreading, the results of which suggest a spreading-velocity-dependent dynamic contact angle in the experiments. The paper is closed with a discussion of the outlook regarding the potential of using the present results in large-scale simulations wherein the contact-line region is not resolved down to the slip length, especially for inertial spreading.


2015 ◽  
Vol 784 ◽  
pp. 465-486 ◽  
Author(s):  
Leonardo Espín ◽  
Satish Kumar

Wetting of permeable substrates by liquids is an important phenomenon in many natural and industrial processes. Substrate heterogeneities may significantly alter liquid spreading and interface shapes, which in turn may alter liquid imbibition. A new lubrication-theory-based model for droplet spreading on permeable substrates that incorporates surface roughness is developed in this work. The substrate is assumed to be saturated with liquid, and the contact-line region is described by including a precursor film and disjoining pressure. A novel boundary condition for liquid imbibition is applied that eliminates the need for a droplet-thickness-dependent substrate permeability that has been employed in previous models. A nonlinear evolution equation describing droplet height as a function of time and the radial coordinate is derived and then numerically solved to characterize the influence of substrate permeability and roughness on axisymmetric droplet spreading. Because it incorporates surface roughness, the new model is able to describe the contact-line pinning that has been observed in experiments but not captured by previous models.


Author(s):  
Carmen L. Moraila-Martínez ◽  
Francisco J. Montes Ruiz-Cabello ◽  
Miguel A. Cabrerizo-Vílchez ◽  
Miguel A. Rodríguez-Valverde

Author(s):  
Fangjun Hong ◽  
Ping Cheng ◽  
Zhen Sun ◽  
Huiying Wu

In this paper, the electrowetting dynamics of a droplet on a dielectric surface was investigated numerically by a mathematical model including dynamic contact angle and contact angle hysteresis. The fluid flow is described by laminar N-S equation, the free surface of the droplet is modeled by the Volume of Fluid (VOF) method, and the electrowetting force is incorporated by exerting an electrical force on the cells at the contact line. The Kilster’s model that can deal with both receding and advancing contact angle is adopted. Numerical results indicate that there is overshooting and oscillation of contact radius in droplet spreading process before it ceases the movement when the excitation voltage is high; while the overshooting is not observed for low voltage. The explanation for the contact line overshooting and some special characteristics of variation of contact radius with time were also conducted.


Author(s):  
Ichiro Ueno

The author introduces a series of experimental studies on a simple but complex wetting process; a droplet spreads on a solid substrate. The spreading droplet on the solid substrate is accompanied with the movement of a visible boundary line so-called ‘macroscopic contact line.’ Existing studies have indicated there exits a thin liquid film known as ‘precursor film’ ahead the macroscopic contact line of the droplet. The present author’s group has dedicated their special effort to detect the advancing edge of the precursor film by applying a convectional laser interferometry and a high-speed camera, and to evaluate the spreading rate of the precursor film.


Sign in / Sign up

Export Citation Format

Share Document