scholarly journals Large N QCD in two dimensions with a baryonic chemical potential

2009 ◽  
Vol 672 (4-5) ◽  
pp. 376-381 ◽  
Author(s):  
Richard Galvez ◽  
Ari Hietanen ◽  
Rajamani Narayanan
1993 ◽  
Vol 303 (1-2) ◽  
pp. 95-98 ◽  
Author(s):  
B. Rusakov

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
M. Abu-Shady ◽  
H. M. Mansour ◽  
A. I. Ahmadov

In this paper, quarkonium dissociation is investigated in an anisotropic plasma in the hot and dense media. For that purpose, the multidimensional Schrödinger equation is solved analytically by Nikiforov-Uvarov (NU) method for the real part of the potential in an anisotropic medium. The binding energy and dissociation temperature are calculated. In comparison with an isotropic medium, the binding energy of quarkonium is enhanced in the presence of an anisotropic medium. The present results show that the dissociation temperature increases with increasing anisotropic parameter for 1S state of the charmonium and bottomonium. We observe that the lower baryonic chemical potential has small effect in both isotropic and anisotropic media. A comparison is presented with other pervious theoretical works.


2018 ◽  
Vol 175 ◽  
pp. 01019 ◽  
Author(s):  
Erhard Seiler

I review the status of the Complex Langevin method, which was invented to make simulations of models with complex action feasible. I discuss the mathematical justification of the procedure, as well as its limitations and open questions. Various pragmatic measures for dealing with the existing problems are described. Finally I report on the progress in the application of the method to QCD, with the goal of determining the phase diagram of QCD as a function of temperature and baryonic chemical potential.


2014 ◽  
Vol 92 (1) ◽  
pp. 31-35 ◽  
Author(s):  
S. Somorendro Singh ◽  
Yogesh Kumar

We evolute a fireball of quark–gluon plasma (QGP) at thermal-dependent chemical potential (TDCP) through a statistical model in the pionic medium. The evolution of the fireball is explained through the free energy created in the pionic medium. We study the dilepton production at TDCP from such a fireball of QGP and hadronic phase. In this model, we take a finite quark mass dependence on temperature and parametrization factor. The temperature and factor enhance in the growth of the droplet formation of quarks and gluons as well as in the dilepton production rates. The production rate shows dilepton spectrum in the low mass region of the lepton pair as 0–1.2 GeV and in the intermediate mass region of 1.0–4.0 GeV. The rate of production is observed to be a strong increasing function of the TDCP for quark and antiquark annihilation. We compare the result of dilepton production at this TDCP with the production rate of the recent dilepton productions at zero and finite baryonic chemical potential and found the result far ahead in the production rates of dilepton at TDCP.


2021 ◽  
Vol 57 (7) ◽  
Author(s):  
Umut Gürsoy

AbstractWe review the holographic approach to electromagnetic phenomena in large N QCD. After a brief discussion of earlier holographic models, we concentrate on the improved holographic QCD model extended to involve magnetically induced phenomena. We explore the influence of magnetic fields on the QCD ground state, focusing on (inverse) magnetic catalysis of chiral condensate, investigate the phase diagram of the theory as a function of magnetic field, temperature and quark chemical potential, and, finally discuss effects of magnetic fields on the quark–anti-quark potential, shear viscosity, speed of sound and magnetization.


2021 ◽  
Author(s):  
Jeremie M. Unterberger

Abstract We give a new constructive proof of the infrared behavior of the Euclidean Gross-Neveu model in two dimensions with small coupling and large component number N. Our argument does not rely on the use of an intermediate (auxiliary bosonic) field. Instead bubble series are resummed by hand, and determinant bounds replaced by a control of local factorials relying on combinatorial arguments and Pauli's principle. The discrete symmetry-breaking is ensured by considering the model directly with a mass counterterm chosen in such a way as to cancel tadpole diagrams. Then the fermion two-point function is shown to decay (quasi-)exponentially as in [12]/


2004 ◽  
Vol 19 (02) ◽  
pp. 205-225 ◽  
Author(s):  
FLORIAN DUBATH ◽  
SIMONE LELLI ◽  
ANNA RISSONE

Two-dimensional SU (N) Yang–Mills theory is known to be equivalent to a string theory, as found by Gross in the large N limit, using the 1/N expansion. Later it was found that even a generalized YM theory leads to a string theory of the Gross type. In the standard YM theory case, Douglas and others found the string Hamiltonian describing the propagation and the interactions of states made of strings winding on a cylindrical space–time. We address the problem of finding a similar Hamiltonian for the generalized YM theory. As in the standard case we start by writing the theory as a theory of free fermions. Performing a bosonization, we express the Hamiltonian in terms of the modes of a bosonic field, that are interpreted as in the standard case as creation and destruction operators for states of strings winding around the cylindrical space–time. The result is similar to the standard Hamiltonian, but with new kinds of interaction vertices.


2017 ◽  
Vol 29 (4) ◽  
pp. 595-644 ◽  
Author(s):  
KEI FONG LAM ◽  
HAO WU

We derive a class of Navier–Stokes–Cahn–Hilliard systems that models two-phase flows with mass transfer coupled to the process of chemotaxis. These thermodynamically consistent models can be seen as the natural Navier–Stokes analogues of earlier Cahn–Hilliard–Darcy models proposed for modelling tumour growth, and are derived based on a volume-averaged velocity, which yields simpler expressions compared to models derived based on a mass-averaged velocity. Then, we perform mathematical analysis on a simplified model variant with zero excess of total mass and equal densities. We establish the existence of global weak solutions in two and three dimensions for prescribed mass transfer terms. Under additional assumptions, we prove the global strong well-posedness in two dimensions with variable fluid viscosity and mobilities, which also includes a continuous dependence on initial data and mass transfer terms for the chemical potential and the order parameter in strong norms.


Sign in / Sign up

Export Citation Format

Share Document