Absorption of massless scalar wave by high-dimensional Lovelock black hole

2011 ◽  
Vol 705 (1-2) ◽  
pp. 124-128 ◽  
Author(s):  
Juhua Chen ◽  
Hao Liao ◽  
Yongjiu Wang
2004 ◽  
Vol 19 (03) ◽  
pp. 239-252 ◽  
Author(s):  
LI-HUI XUE ◽  
ZAI-XIONG SHEN ◽  
BIN WANG ◽  
RU-KENG SU

We study the massless scalar wave propagation in the time-dependent Schwarzschild black hole background. We find that the Kruskal coordinate is an appropriate framework to investigate the time-dependent spacetime. A time-dependent scattering potential is derived by considering dynamical black hole with parameters changing with time. It is shown that in the quasinormal ringing both the decay time-scale and oscillation are modified in the time-dependent background.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
Xin-Chang Cai ◽  
Yan-Gang Miao

AbstractWe obtain a high-dimensional Schwarzschild black hole solution in the scalar–tensor–vector gravity (STVG), and then analyze the influence of parameter $$\alpha $$ α associated with a deviation of the STVG theory from General Relativity on event horizons and Hawking temperature. We calculate the quasinormal mode frequencies of massless scalar field perturbations for the high-dimensional Schwarzschild STVG black hole by using the sixth-order WKB approximation method and the unstable null geodesic method in the eikonal limit. The results show that the increase of parameter $$\alpha $$ α makes the scalar waves decay slowly, while the increase of the spacetime dimension makes the scalar waves decay fast. In addition, we study the influence of parameter $$\alpha $$ α on the shadow radius of this high-dimensional Schwarzschild STVG black hole and find that the increase of parameter $$\alpha $$ α makes the black hole shadow radius increase, but the increase of the spacetime dimension makes the black hole shadow radius decrease. Finally, we investigate the energy emission rate of the high-dimensional Schwarzschild STVG black hole, and find that the increase of parameter $$\alpha $$ α makes the evaporation process slow, while the increase of the spacetime dimension makes the process fast.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Panos Betzios ◽  
Nava Gaddam ◽  
Olga Papadoulaki

Abstract We describe a unitary scattering process, as observed from spatial infinity, of massless scalar particles on an asymptotically flat Schwarzschild black hole background. In order to do so, we split the problem in two different regimes governing the dynamics of the scattering process. The first describes the evolution of the modes in the region away from the horizon and can be analysed in terms of the effective Regge-Wheeler potential. In the near horizon region, where the Regge-Wheeler potential becomes insignificant, the WKB geometric optics approximation of Hawking’s is replaced by the near-horizon gravitational scattering matrix that captures non-perturbative soft graviton exchanges near the horizon. We perform an appropriate matching for the scattering solutions of these two dynamical problems and compute the resulting Bogoliubov relations, that combines both dynamics. This allows us to formulate an S-matrix for the scattering process that is manifestly unitary. We discuss the analogue of the (quasi)-normal modes in this setup and the emergence of gravitational echoes that follow an original burst of radiation as the excited black hole relaxes to equilibrium.


2010 ◽  
Vol 53 (3) ◽  
pp. 504-507 ◽  
Author(s):  
Ren Zhao ◽  
HuaiFan Li ◽  
LiChun Zhang ◽  
YueQin Wu

2015 ◽  
Vol 30 (11) ◽  
pp. 1550057 ◽  
Author(s):  
Sharmanthie Fernando

In this paper, we have studied a black hole in de Sitter space which has a conformally coupled scalar field in the background. This black hole is also known as the MTZ black hole. We have obtained exact values for the quasi-normal mode (QNM) frequencies under massless scalar field perturbations. We have demonstrated that when the black hole is near-extremal, that the wave equation for the massless scalar field simplifies to a Schrödinger type equation with the well-known Pöschl–Teller potential. We have also used sixth-order WKB approximation to compute QNM frequencies to compare with exact values obtained via the Pöschl–Teller method for comparison. As an application, we have obtained the area spectrum using modified Hods approach and show that it is equally spaced.


2007 ◽  
Vol 22 (24) ◽  
pp. 4451-4465 ◽  
Author(s):  
MOLIN LIU ◽  
HONGYA LIU ◽  
CHUNXIAO WANG ◽  
YONGLI PING

The Nariai black hole, whose two horizons are lying close to each other, is an extreme and important case in the research of black hole. In this paper we study the evolution of a massless scalar field scattered around in 5D Schwarzschild–de Sitter black string space. Using the method shown by Brevik and Simonsen (2001) we solve the scalar field equation as a boundary value problem, where real boundary condition is employed. Then with convenient replacement of the 5D continuous potential by square barrier, the reflection and transmission coefficients (R, T) are obtained. At last, we also compare the coefficients with the usual 4D counterpart.


The physical basis underlying the black hole evaporation process is clarified by a calculation of the expectation value of the energy-momentum tensor for a massless scalar field in a completely general two dimensional collapse scenario. It is found that radiation is produced inside the collapsing matter which propagates both inwards and outwards. The ingoing com­ponent eventually emerges from the star after travelling through the centre. The outgoing energy flux appears at infinity as the evaporation radiation discovered by Hawking. At late times, outside the star, the former component fades out exponentially, and the latter component approaches a value which is independent of the details of the collapse process. In the special case of a collapsing hollow, thin shell of matter, all the radiation is produced at the shell. These results are independent of regularization ambiguities, which enter only the static vacuum polariza­tion terms in the energy-momentum tensor. The significance of an earlier remark about black hole explosions is discussed in the light of these results.


2020 ◽  
Vol 35 (36) ◽  
pp. 2050298
Author(s):  
Abdul Jawad ◽  
Muhammad Yasir ◽  
Shamaila Rani

The Joule–Thomson effect and quasinormal modes (QNM) onto regular non-minimal magnetic charged black hole with a cosmological constant are being investigated. For this purpose, we extract some thermodynamical parameters such as pressure [Formula: see text] and mass [Formula: see text] in the presence of magnetic [Formula: see text] as well as electric [Formula: see text] charge. These parameters lead to inversion temperature [Formula: see text], pressure [Formula: see text] and corresponding isenthalpic curves. We introduce the tortoise coordinate and the Klein–Gordon wave equation which leads to the second-order ordinary Schrödinger equation. We find out the complex frequencies of QNMs through the massless scalar field perturbation which satisfy boundary conditions by using the first-order Wentzel–Kramers–Brillouin (WKB) technique.


Sign in / Sign up

Export Citation Format

Share Document