scholarly journals A class of QFTs with higher derivative field equations leading to standard dispersion relation for the particle excitations

2020 ◽  
Vol 811 ◽  
pp. 135912
Author(s):  
T. Padmanabhan
1998 ◽  
Vol 07 (05) ◽  
pp. 727-735 ◽  
Author(s):  
M. D. POLLOCK

The question of the initial configuration of the Universe — did the expanding Friedmann space-time ds2 = dt2 - a2(t)dx2 tend to a singularity when extrapolated back in time, or was there a turning point, indicating a previous phase of contraction? — is re-examined in the context of the heterotic superstring theory of Gross et al. If the adiabatic index tends to the value γ = 1, then the higher-derivative terms ℛ2 in the Lagrangian L dominate the Einstein–Hilbert term R/16πG in the time interval t p ≲ t ≲ 4t p , during which the action is S ≈ 25ℏ, guaranteeing the approximate validity of the classical field equations (if the compactification process is ignored), where [Formula: see text] is the Newton gravitational constant and t p is the Planck time. Under these conditions, Ruzmaĭkina and Ruzmaĭkina have shown, for a flat three-space with K = 0, that the initial singularity can only be avoided at all if there is a spin-zero tachyon, a conclusion modified by Barrow and Ottewill if K = ±1. We have previously shown, however, that the theory is tachyon-free, and have argued that K has to vanish for the existence of a well-defined, quantum-mechanical ground state. Also, if there is no inflation, the radius function is always much too large for the terms in K to exert any effect, a(t) ≳ 5 × 1029t p . While if γ = 2, then ℛ2 never dominates R/16πG. Accordingly, we conjecture that the Universe did not bounce, irrespective of the value of γ, the absence of a prior contracting phase thus being an aspect of causality.


2016 ◽  
Vol 13 (07) ◽  
pp. 1650102 ◽  
Author(s):  
Tiberiu Harko ◽  
Francisco S. N. Lobo ◽  
Emmanuel N. Saridakis

We investigate the cosmological implications of a new class of modified gravity, where the field equations generically include higher-order derivatives of the matter fields, arising from the introduction of non-dynamical auxiliary fields in the action. Imposing a flat, homogeneous and isotropic geometry, we extract the Friedmann equations, obtaining an effective dark-energy sector containing higher-derivatives of the matter energy density and pressure. For the cases of dust, radiation and stiff matter, we analyze the cosmological behavior, finding accelerating, de Sitter and non-accelerating phases, dominated by matter or dark-energy. Additionally, the effective dark-energy equation-of-state parameter can be quintessence-like, cosmological-constant-like or even phantom-like. The detailed study of these scenarios may provide signatures, that could distinguish them from other candidates of modified gravity.


1991 ◽  
Vol 503 (8) ◽  
pp. 543-557 ◽  
Author(s):  
F. Müller-Hoissen

2019 ◽  
Author(s):  
Damiano Anselmi

Under certain assumptions, it is possible to make sense of higher derivative theories by quantizing the unwanted degrees of freedom as fakeons, which are later projected away. Then the true classical limit is obtained by classicizing the quantum theory. Since quantum field theory is formulated perturbatively, the classicization is also perturbative. After deriving a number of properties in a general setting, we consider the theory of quantum gravity that emerges from the fakeon idea and study its classicization, focusing on the FLRW metric. We point out cases where the fakeon projection can be handled exactly, which include radiation, the vacuum energy density and the combination of the two, and cases where it cannot, which include dust. Generically, the classical limit shares many features with the quantum theory it comes from, including the impossibility to write down complete, “exact” field equations, to the extent that asymptotic series and nonperturbative effects come into play.


2019 ◽  
Vol 97 (8) ◽  
pp. 816-827
Author(s):  
Rami Ahmad El-Nabulsi

We argue that it is possible to obtain higher-derivative Einstein’s field equations by means of an extended complexified backward–forward nonlocal extension of the space–time metric, which depends on space–time vectors. Our approach generalizes the notion of the covariant derivative along tangent vectors of a given manifold, and accordingly many of the differential geometrical operators and symbols used in general relativity. Equations of motion are derived and a nonlocal complexified general relativity theory is formulated. A number of illustrations are proposed and discussed accordingly.


2010 ◽  
Vol 25 (04) ◽  
pp. 269-276 ◽  
Author(s):  
ANTONIO ACCIOLY ◽  
ESLLEY SCATENA

We investigate a higher-derivative version of QED constructed by adding to the Maxwell's Lagrangian a term containing second-order derivatives of the electromagnetic potentials. The resulting Lagrangian, besides being gauge and Lorentz invariant, gives origin to local field equations that are linear in the field quantities. Two bounds on the coupling constant of this higher-order model are estimated: one of them is found using the measurements obtained on a lab experiment whose principal aim was to test the Coulomb's inverse square law, the other involves the computation of the anomalous magnetic moment of the electron in the framework of the aforementioned system. As a by-product of the calculations on the quantum limit, a bound on the Lee–Wick heavy photon mass of the same order of magnitude as the masses of the vectorial bosons found in nature, is obtained as well.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Seyed Ali Hosseini Mansoori ◽  
Alireza Talebian ◽  
Hassan Firouzjahi

Abstract We study inflationary solution in an extension of mimetic gravity with the higher derivative interactions coupled to gravity. Because of the higher derivative interactions the setup is free from the ghost and gradient instabilities while it hosts a number of novel properties. The dispersion relation of scalar perturbations develop quartic momentum correction similar to the setup of ghost inflation. Furthermore, the tilt of tensor perturbations can take either signs with a modified consistency relation between the tilt and the amplitude of tensor perturbations. Despite the presence of higher derivative interactions coupled to gravity the tensor perturbations propagate with the speed equal to the speed of light as required by the LIGO observations. Furthermore, the higher derivative interactions induce non-trivial interactions in cubic Hamiltonian, generating non-Gaussianities in various shapes such as the equilateral, orthogonal and squeezed configurations with observable amplitudes.


Sign in / Sign up

Export Citation Format

Share Document