scholarly journals Cosmology with higher-derivative matter fields

2016 ◽  
Vol 13 (07) ◽  
pp. 1650102 ◽  
Author(s):  
Tiberiu Harko ◽  
Francisco S. N. Lobo ◽  
Emmanuel N. Saridakis

We investigate the cosmological implications of a new class of modified gravity, where the field equations generically include higher-order derivatives of the matter fields, arising from the introduction of non-dynamical auxiliary fields in the action. Imposing a flat, homogeneous and isotropic geometry, we extract the Friedmann equations, obtaining an effective dark-energy sector containing higher-derivatives of the matter energy density and pressure. For the cases of dust, radiation and stiff matter, we analyze the cosmological behavior, finding accelerating, de Sitter and non-accelerating phases, dominated by matter or dark-energy. Additionally, the effective dark-energy equation-of-state parameter can be quintessence-like, cosmological-constant-like or even phantom-like. The detailed study of these scenarios may provide signatures, that could distinguish them from other candidates of modified gravity.

2016 ◽  
Vol 94 (2) ◽  
pp. 201-208 ◽  
Author(s):  
V. Fayaz ◽  
H. Hossienkhani ◽  
A. Pasqua ◽  
Z. Zarei ◽  
M. Ganji

In this paper, we consider the generalized ghost dark energy in a Bianchi type-I metric (which is a spatially homogeneous and anisotropic) in the framework of Brans–Dicke theory. For this purpose, we use the squared sound speed [Formula: see text] the sign of which determines the stability of the model. At first, we obtain the equation of state parameter, ωΛ = pΛ/ρΛ, the deceleration parameter q and the evolution equation of the generalized ghost dark energy. We find that, in this case, ωΛ cannot cross the phantom line (ωΛ > –1) and eventually the universe approaches a de-Sitter phase of expansion (ωΛ → –1). Then, we extend our study to the case of generalized ghost dark energy in a non-isotropic and Brans–Dicke framework and find out that the transition of ωΛ to the phantom regime can be more easily accounted for than when it is restored into the Einstein field equations. In conclusion, we find evidence that the generalized ghost dark energy in BD theory can lead to a stable universe favored by observations at the present time.


2018 ◽  
Vol 96 (1) ◽  
pp. 112-125 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay ◽  
Ratbay Myrzakulov

In this paper, we study the effects that are produced by the interaction between a brane Universe and the bulk in which the Universe is embedded. Taking into account the effects produced by the interaction between a brane Universe and the bulk, we derived the equation of state parameter ωD for three different models of dark energy (DE): holographic DE model with infrared cutoff given by the Granda–Oliveros cutoff, the modified holographic Ricci DE model, and a DE model that is a function of the Hubble parameter H squared and to higher derivatives of H. Moreover, we have considered two different cases of scale factor (namely, the power law and the emergent ones). A nontrivial contribution of the DE is observed to be different from the standard matter fields confined to the brane. Such contribution has a monotonically decreasing behavior upon the evolution of the Universe for the emergent scenario of the scale factor, while monotonically increasing for the power-law form of the scale factor a(t).


2017 ◽  
Vol 15 (01) ◽  
pp. 1830001 ◽  
Author(s):  
G. S. Khadekar ◽  
Deepti Raut

In this paper, we present two viscous models of non-perfect fluid by avoiding the introduction of exotic dark energy. We consider the first model in terms of deceleration parameter [Formula: see text] has a viscosity of the form [Formula: see text] and the other model in quadratic form of [Formula: see text] of the type [Formula: see text]. In this framework we find the solutions of field equations by using inhomogeneous equation of state of form [Formula: see text] with equation of state parameter [Formula: see text] is constant and [Formula: see text].


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
M. Vijaya Santhi ◽  
Y. Sobhanbabu

AbstractIn this paper, we have investigated Tsallis holographic dark energy (infrared cutoff is the Hubble radius) in homogeneous and anisotropic Bianchi type-III Universe within the framework of Saez–Ballester scalar–tensor theory of gravitation. We have constructed non-interaction and interaction dark energy models by solving the Saez–Ballester field equations. To solve the field equations, we assume a relationship between the metric potentials of the model. We developed the various cosmological parameters (namely deceleration parameter q, equation of state parameter $$\omega _t$$ ω t , squared sound speed $$v_s^2$$ v s 2 , om-diagnostic parameter Om(z) and scalar field $$\phi $$ ϕ ) and well-known cosmological planes (namely $$\omega _t-\omega _t^{'}$$ ω t - ω t ′ plane, where $$'$$ ′ denotes derivative with respect to ln(a) and statefinders ($$r-s$$ r - s ) plane) and analyzed their behavior through graphical representation for our both the models. It is also, quite interesting to mention here that the obtained results are coincide with the modern observational data.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950132 ◽  
Author(s):  
Jianbo Lu ◽  
Xin Zhao ◽  
Shining Yang ◽  
Jiachun Li ◽  
Molin Liu

A modified Brans–Dicke theory (abbreviated as GBD) is proposed by generalizing the Ricci scalar [Formula: see text] to an arbitrary function [Formula: see text] in the original BD action. It can be found that the GBD theory has some interesting properties, such as solving the problem of PPN value without introducing the so-called chameleon mechanism (comparing with the [Formula: see text] modified gravity), making the state parameter to crossover the phantom boundary: [Formula: see text] without introducing the negative kinetic term (comparing with the quintom model). In the GBD theory, the gravitational field equation and the cosmological evolutional equations have been derived. In the framework of cosmology, we apply the dynamical system approach to investigate the stability of the GBD model. A five-variable cosmological dynamical system and three critical points ([Formula: see text], [Formula: see text], [Formula: see text]) are obtained in the GBD model. After calculation, it is shown that the critical point [Formula: see text] corresponds to the radiation dominated universe and it is unstable. The critical point [Formula: see text] is unstable, which corresponds to the geometrical dark energy dominated universe. While for case of [Formula: see text], according to the center manifold theory, this critical point is stable, and it corresponds to geometrical dark energy dominated de Sitter universe ([Formula: see text]).


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
M. Younas ◽  
Abdul Jawad ◽  
Saba Qummer ◽  
H. Moradpour ◽  
Shamaila Rani

Recently, Tsallis, Rényi, and Sharma-Mittal entropies have widely been used to study the gravitational and cosmological setups. We consider a flat FRW universe with linear interaction between dark energy and dark matter. We discuss the dark energy models using Tsallis, Rényi, and Sharma-Mittal entropies in the framework of Chern-Simons modified gravity. We explore various cosmological parameters (equation of state parameter, squared sound of speed ) and cosmological plane (ωd-ωd′, where ωd′ is the evolutionary equation of state parameter). It is observed that the equation of state parameter gives quintessence-like nature of the universe in most of the cases. Also, the squared speed of sound shows stability of Tsallis and Rényi dark energy model but unstable behavior for Sharma-Mittal dark energy model. The ωd-ωd′ plane represents the thawing region for all dark energy models.


2019 ◽  
Vol 28 (11) ◽  
pp. 1950149 ◽  
Author(s):  
Antonio Pasqua ◽  
Surajit Chattopadhyay ◽  
Aroonkumar Beesham

In this paper, we study some relevant cosmological features of a Dark Energy (DE) model with Granda–Oliveros cut-off, which is just a specific case of Nojiri–Odintsov holographic DE [S. Nojiri and S. D. Odintsov, Gen. Relativ. Gravit. 38 (2006) 1285] unifying phantom inflation with late-time acceleration, in the framework of Chameleon Brans–Dicke (BD) cosmology. Choosing a particular ansatz for some of the quantities involved, we derive the expressions of some important cosmological quantities, like the Equation of State (EoS) parameter of DE [Formula: see text], the effective EoS parameter [Formula: see text], the pressure of DE [Formula: see text] and the deceleration parameter [Formula: see text]. Moreover, we study the behavior of statefinder parameters [Formula: see text] and [Formula: see text], of the cosmographic parameters [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] and of the squared speed of the sound [Formula: see text] for both case corresponding to noninteracting and interacting Dark sectors. We also plot the quantities we have derived and we calculate their values for [Formula: see text] (i.e. for the beginning of the universe history), for [Formula: see text] (i.e. for far future) and for the present time, indicated with [Formula: see text]. The EoS parameters have been tested against various observational values available in the literature.


Author(s):  
Adrià Delhom

Abstract We deal with the question of what it means to define a minimal coupling prescription in presence of torsion and/or non-metricity, carefully explaining while the naive substitution $$\partial \rightarrow \nabla $$∂→∇ introduces extra couplings between the matter fields and the connection that can be regarded as non-minimal in presence of torsion and/or non-metricity. We will also investigate whether minimal coupling prescriptions at the level of the action (MCPL) or at the level of field equations (MCPF) lead to different dynamics. To that end, we will first write the Euler–Lagrange equations for matter fields in terms of the covariant derivatives of a general non-Riemannian space, and derivate the form of the associated Noether currents and charges. Then we will see that if the minimal coupling prescriptions is applied as we discuss, for spin 0 and 1 fields the results of MCPL and MCPF are equivalent, while for spin 1/2 fields there is a difference if one applies the MCPF or the MCPL, since the former leads to charge violation.


Author(s):  
T. Vinutha ◽  
V.U.M. Rao ◽  
Molla Mengesha

The present study deals with a spatially homogeneous locally rotationally symmetric (LRS) Bianchi type-I dark energy cosmological model containing one dimensional cosmic string fluid source. The Einstein's field equations are solved by using a relation between the metric potentials and hybrid expansion law of average scale factor. We discuss accelerated expansion of our model through equation of state (ωde) and deceleration parameter (q). We observe that in the evolution of our model, the equation of state parameter starts from matter dominated phase ωde > -1/3 and ultimately attains a constant value in quintessence region (-1 < ωde < -1/3). The EoS parameter of the model never crosses the phantom divide line (ωde = 1). These facts are consistent with recent observations. We also discuss some other physical parameters.


2011 ◽  
Vol 03 ◽  
pp. 294-302
Author(s):  
NELSON PINTO-NETO ◽  
BEATRIZ B. SIFFERT ◽  
RODRIGO MAIER ◽  
STELLA PEREIRA

Most bouncing models contain a contracting phase from a very large and rarefied state, where dark energy might have had an important role. If this is that case, the presence of dark energy can modify the initial conditions and evolution of cosmological perturbations, changing the known results already obtained in the literature concerning their amplitude and spectrum. In this work, we assume the simplest and most appealing candidate for dark energy, the cosmological constant, and study its influence on the evolution of cosmological perturbations during the contracting phase of a bouncing model, containing also a perfect fluid with constant equation of state parameter w. We show that, due to the vacuum state choice we have to make when a cosmological constant is present, the spectrum of the perturbations are substantially altered. We conclude that, in this case, the presence of a stiff matter fluid in the contracting phase is needed in order to have a scale invariant spectrum of perturbations in the expanding phase.


Sign in / Sign up

Export Citation Format

Share Document