scholarly journals Magnetic field screening in strong crossed electromagnetic fields

2021 ◽  
pp. 136562
Author(s):  
S. Campion ◽  
J.A. Rueda ◽  
R. Ruffini ◽  
S.-S. Xue
2021 ◽  
Vol 65 (10) ◽  
pp. 911-915
Author(s):  
S. Campion ◽  
J. A. Rueda ◽  
S. S. Xue ◽  
R. Ruffini

2005 ◽  
Vol 14 (03n04) ◽  
pp. 687-695 ◽  
Author(s):  
B. J. AHMEDOV ◽  
A. V. KHUGAEV ◽  
N. I. RAKHMATOV

We present analytic solutions of Maxwell equations for infinitely long cylindrical conductors with nonvanishing electric charge and currents in the external background spacetime of a line gravitomagnetic monopole. It has been shown that vertical magnetic field arising around cylindrical conducting shell carrying azimuthal current will be modified by the gravitational field of NUT source. We obtain that the purely general relativistic magnetic field which has no Newtonian analog will be produced around charged gravitomagnetic monopole.


Author(s):  
Xiaoxia Yuan ◽  
Cangtao Zhou ◽  
Hua Zhang ◽  
Jiayong Zhong ◽  
Bo Han ◽  
...  

Abstract Ultrafast proton radiography has been frequently used for direct measurement of the electromagnetic fields around laser-driven capacitor-coil targets. The goal is to accurately infer the coil currents and their magnetic field generation for a robust magnetic field source that can lead to many applications. The technique often involves numerical calculations for synthetic proton images to reproduce experimental measurements. While electromagnetic fields are the primary source for proton deflections around the capacitor coils, stopping power and small angle deflection can also contribute to the observed experimental features. Here we present a comprehensive study of the proton radiography technique including all sources of proton deflections as a function of coil shapes, current magnitudes, and proton energies. Good agreements were achieved between experimental data and numerical calculations that include both the stopping power and small angle deflections, particularly when the induced coil currents were small.


2020 ◽  
Vol 117 (16) ◽  
pp. 162401
Author(s):  
Graeme Flower ◽  
Benjamin McAllister ◽  
Maxim Goryachev ◽  
Michael E. Tobar

2019 ◽  
Vol 953 ◽  
pp. 127-132
Author(s):  
Yu Ling Chen ◽  
Du Yan Geng ◽  
Chuan Fang Chen

In this paper, the effects of the quantum yield of free radicals in cryptochrome exposed to different electromagnetic fields were studied through the quantum biology. The results showed that the spikes characteristics was produced in the free radicals in cryptochrome, when it exposed to the applied magnetic field (ω = 50 Hz, B0 = 50 μT). The spikes produced by the electromagnetic field was independent of the changes of polar θ. When the frequency of the magnetic field increased, the spikes characteristics produced in unit time also increased. These results showed that the environmental electromagnetic field could affect the response of organisms to the geomagnetic field by influencing the quantum yield in the mechanism of free radical pair.It provided a basis for studying the influence of environmental electromagnetic field on biology, especially the navigation of biological magnetism.


2009 ◽  
Vol 23 (07) ◽  
pp. 989-1004
Author(s):  
LIUGANG SI ◽  
XINYOU LÜ ◽  
PEIJUN SONG ◽  
JIBING LIU

The authors theoretically investigate the formation of ultraslow dark and bright solitons via four-wave mixing (FWM) in a crystal of molecular magnets in the presence of a uniform d.c. magnetic field, where two strong continuous wave pump electromagnetic fields and a weak-pulsed probe electromagnetic field produce a pulsed FWM electromagnetic field. By solving the Maxwell–Schrödinger equations under the slowly varying envelope approximation and rotating-wave approximations, we demonstrate that both the weak-pulsed probe and FWM electromagnetic fields can evolve into dark and bright solitons with the same shape and the same ultraslow group velocity.


1996 ◽  
Vol 63 (3) ◽  
pp. 734-741 ◽  
Author(s):  
D. L. Littlefield

The effects of electromagnetic fields on instabilities in metal cylinders are considered in this analysis. The cylinder is assumed to be infinitely long and perfectly conducting. An axial electric current is introduced in the cylinder, giving rise to an azimuthal magnetic field in the surrounding vacuum, causing mechanical distortion in the cylinder. The current is assumed to be small so that the deformation remains elastic; in an accompanying paper (Littlefield, 1996) larger currents are considered where plastic flow becomes important. After solutions to the idealized motion of the cylinder under uniaxial strain conditions are developed, small perturbations to the motion are considered. The equations governing the motion of these disturbances are derived using linear perturbation theory. Solutions to the equations indicate that electromagnetic fields can have a substantial effect on the stability spectrum in the cylinder. In general, the frequency of oscillating perturbations is suppressed by the azimuthal magnetic field, and distending instabilities are possible if the magnetic field is above a threshold value. The underlying physical mechanisms contributing to these deviations are proposed.


Geophysics ◽  
1974 ◽  
Vol 39 (3) ◽  
pp. 355-355
Author(s):  
Shri Krishna Singh

In this paper Verma obtains a time‐domain solution by inverting the frequency‐domain solution given by Wait (1952). However, it has been recently pointed out by Singh (1973a) (see also Wait, 1973) that there is an error in the quasi‐static solution of Wait. Wait neglected the axially symmetric inducted electric current in the cylinder giving rise to a secondary transverse magnetic field outside (the n=0 term in the scattered wavefield). Singh (1973a) has shown that this term dominates. [It should be noted that Wait in his other works on the cylinder retains this term (e.g., Wait, 1959).] It is clear that this term would be dominant in the time‐domain also. This has been shown by Singh (1972, 1973b). Since the theoretical solution given by Verma in the paper under discussion is incomplete, his interpretation schemes are meaningless.


Sign in / Sign up

Export Citation Format

Share Document