Metabolite analysis in Nymphaea ‘Blue Bird’ petals reveal the roles of flavonoids in color formation, stress amelioration, and bee orientation

Plant Science ◽  
2021 ◽  
pp. 111025
Author(s):  
Ying Zhao ◽  
Weijuan Zhou ◽  
Yan Chen ◽  
Zhaoji Li ◽  
Xiqiang Song ◽  
...  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yu-Fu Gao ◽  
Dong-Hui Zhao ◽  
Jia-Qi Zhang ◽  
Jia-Shuo Chen ◽  
Jia-Lin Li ◽  
...  

Abstract Background Leaf color is an important ornamental trait of colored-leaf plants. The change of leaf color is closely related to the synthesis and accumulation of anthocyanins in leaves. Acer pseudosieboldianum is a colored-leaf tree native to Northeastern China, however, there was less knowledge in Acer about anthocyanins biosynthesis and many steps of the pathway remain unknown to date. Results Anthocyanins metabolite and transcript profiling were conducted using HPLC and ESI-MS/MS system and high-throughput RNA sequencing respectively. The results demonstrated that five anthocyanins were detected in this experiment. It is worth mentioning that Peonidin O-hexoside and Cyanidin 3, 5-O-diglucoside were abundant, especially Cyanidin 3, 5-O-diglucoside displayed significant differences in content change at two periods, meaning it may be play an important role for the final color. Transcriptome identification showed that a total of 67.47 Gb of clean data were obtained from our sequencing results. Functional annotation of unigenes, including comparison with COG and GO databases, yielded 35,316 unigene annotations. 16,521 differentially expressed genes were identified from a statistical analysis of differentially gene expression. The genes related to leaf color formation including PAL, ANS, DFR, F3H were selected. Also, we screened out the regulatory genes such as MYB, bHLH and WD40. Combined with the detection of metabolites, the gene pathways related to anthocyanin synthesis were analyzed. Conclusions Cyanidin 3, 5-O-diglucoside played an important role for the final color. The genes related to leaf color formation including PAL, ANS, DFR, F3H and regulatory genes such as MYB, bHLH and WD40 were selected. This study enriched the available transcriptome information for A. pseudosieboldianum and identified a series of differentially expressed genes related to leaf color, which provides valuable information for further study on the genetic mechanism of leaf color expression in A. pseudosieboldianum.


2020 ◽  
Author(s):  
Yu-fu Gao ◽  
Dong-hui Zhao ◽  
Jia-qi Zhang ◽  
Jia-shuo Chen ◽  
Liping Rong

Abstract Background Leaf color is an important ornamental trait of colored-leaf plants. The change of leaf color is closely related to the synthesis and accumulation of anthocyanins in leaves. Acer pseudosieboldianum is a colored-leaf tree native to Northeastern China, however, there was less knowledge in Acer about anthocyanins biosynthesis and many steps of the pathway remain unknown to date. Results Anthocyanins metabolite and transcript profiling were conducted using HPLC and ESI-MS/MS system and high-throughput RNA sequencing respectively. The results demonstrated that five anthocyanins were detected in this experiment. It is worth mentioning that Peonidin O-hexoside and Cyanidin 3 5-O-diglucoside were abundant, especially Cyanidin 3 5-O-diglucoside displayed significant differences in content change at two periods, meaning it may be play an important role for the final color. Transcriptome identification showed that a total of 67.47 Gb of clean data were obtained from our sequencing results. Functional annotation of unigenes, including comparison with COG and GO databases, yielded 35,316 unigene annotations. 16,521 differentially expressed genes were identified from a statistical analysis of differentially gene expression. The genes related to leaf color formation including PAL, ANS, DFR, F3H were selected. Also, we screened out the regulatory genes such as MYB, bHLH and WD40. Combined with the detection of metabolites, the gene pathways related to anthocyanin synthesis were analyzed. Conclusion Cyanidin 3, 5-O-diglucoside played an important role for the final color. The genes related to leaf color formation including PAL, ANS, DFR, F3H and regulatory genes such as MYB, bHLH and WD40 were selected. This study enriched the available transcriptome information for A. pseudosieboldianum and identified a series of differentially expressed genes related to leaf color, which provides valuable information for further study on the genetic mechanism of leaf color expression in A. pseudosieboldianum.


2020 ◽  
Vol 783 (8) ◽  
pp. 38-46
Author(s):  
Stolboushkin A.Yu. ◽  
◽  
Akst D.V. ◽  
Fomina O.A. ◽  
◽  
...  
Keyword(s):  

2018 ◽  
pp. 581-589
Author(s):  
Philipp Bruhns ◽  
Timo Koch ◽  
Lothar Kroh

Storage stability of white beet sugar is an important factor determining the sugar quality. Due to color formation during storage the sugar color can exceed the quality criteria of the European council directive 2001/111/EC for white sugar. It is not possible to predict the color formation tendency of a white sugar lot at the time of its production. Also the source and the mechanism of color formation during storage are unknown. Color formation in general can be caused by several factors, which can be divided into external influences such as humidity and temperature during storage and internal causes such as contents of ash, polyphenols, mono- and oligosaccharides, and amino compounds. In this work, the effect of the above mentioned factors and the nature of the formed colorants were analyzed. Studies on the color distribution in sugar crystals were carried out and the nonsucrose compounds in the surface film were determined. The syrup film on the crystal surface contains the same compounds and in similar contents as thick juice. A correlation between the changes in the amino acid and monosaccharide content and the color formation was established, which shows that the Maillard reaction is responsible for the color development during storage of sugar.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
James Kirby ◽  
Gina M. Geiselman ◽  
Junko Yaegashi ◽  
Joonhoon Kim ◽  
Xun Zhuang ◽  
...  

Abstract Background Mitigation of climate change requires that new routes for the production of fuels and chemicals be as oil-independent as possible. The microbial conversion of lignocellulosic feedstocks into terpene-based biofuels and bioproducts represents one such route. This work builds upon previous demonstrations that the single-celled carotenogenic basidiomycete, Rhodosporidium toruloides, is a promising host for the production of terpenes from lignocellulosic hydrolysates. Results This study focuses on the optimization of production of the monoterpene 1,8-cineole and the sesquiterpene α-bisabolene in R. toruloides. The α-bisabolene titer attained in R. toruloides was found to be proportional to the copy number of the bisabolene synthase (BIS) expression cassette, which in turn influenced the expression level of several native mevalonate pathway genes. The addition of more copies of BIS under a stronger promoter resulted in production of α-bisabolene at 2.2 g/L from lignocellulosic hydrolysate in a 2-L fermenter. Production of 1,8-cineole was found to be limited by availability of the precursor geranylgeranyl pyrophosphate (GPP) and expression of an appropriate GPP synthase increased the monoterpene titer fourfold to 143 mg/L at bench scale. Targeted mevalonate pathway metabolite analysis suggested that 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), mevalonate kinase (MK) and phosphomevalonate kinase (PMK) may be pathway bottlenecks are were therefore selected as targets for overexpression. Expression of HMGR, MK, and PMK orthologs and growth in an optimized lignocellulosic hydrolysate medium increased the 1,8-cineole titer an additional tenfold to 1.4 g/L. Expression of the same mevalonate pathway genes did not have as large an impact on α-bisabolene production, although the final titer was higher at 2.6 g/L. Furthermore, mevalonate pathway intermediates accumulated in the mevalonate-engineered strains, suggesting room for further improvement. Conclusions This work brings R. toruloides closer to being able to make industrially relevant quantities of terpene from lignocellulosic biomass.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 896
Author(s):  
Ziwen Su ◽  
Xicheng Wang ◽  
Xuxian Xuan ◽  
Zilu Sheng ◽  
Haoran Jia ◽  
...  

In recent years, more and more reports have shown that the miR156-SPL module can participate in the regulation of anthocyanin synthesis in plants. However, little is known about how this module responds to hormonal signals manipulating this process in grapes. In this study, exogenous GA, ABA, MeJA, and NAA were used to treat the ‘Wink’ grape berries before color conversion, anthocyanin and other related quality physiological indexes (such as sugar, aroma) were determined, and spatio-temporal expression patterns of related genes were analyzed. The results showed that the expression levels of VvmiR156b/c/d showed a gradually rising trend with the ripening and color formation of grape berries, and the highest expression levels were detected at day 28 after treatment, while the expression level of VvSPL9 exhibited an opposite trend as a whole, which further verifies that VvmiR156b/c/d can negatively regulate VvSPL9. Besides, VvmiR156b/c/d was positively correlated with anthocyanin content and related genes levels, while the expression pattern of VvSPL9 showed a negative correlation. Analysis of promoter cis-elements and GUS staining showed that VvmiR156b/c/d contained a large number of hormone response cis-elements (ABA, GA, SA, MeJA, and NAA) and were involved in hormone regulation. Exogenous ABA and MeJA treatments significantly upregulated the expression levels of VvmiR156b/c/d and anthocyanin structural genes in the early stage of color conversion and made grape berries quickly colored. Interestingly, GA treatment downregulated the expression levels of VvmiR156b/c/d and anthocyanin structural genes in the early color-change period, but significantly upregulated in the middle color-change and ripening stages, therefore GA mainly modulated grape berry coloring in the middle- and late-ripening stages. Furthermore, NAA treatment downregulated the expression levels of VvmiR156b/c/d and anthocyanin structural genes and delayed the peak expression of genes. Meanwhile, to further recognize the potential functions of VvmiR156b/c/d, the mature tomato transient trangenetic system was utilized in this work. Results showed that transient overexpression of VvmiR156b/c/d in tomato promoted fruit coloring and overexpression of VvSPL9 inhibited fruit coloration. Finally, a regulatory network of the VvmiR156b/c/d-VvSPL9 module responsive to hormones modulating anthocyanin synthesis was developed. In conclusion, VvmiR156b/c/d-mediated VvSPL9 participated in the formation of grape color in response to multi-hormone signals.


2021 ◽  
Vol 43 (2) ◽  
pp. 173-182
Author(s):  
Lei Wang ◽  
Hehe Liu ◽  
Bo Hu ◽  
Jiwei Hu ◽  
Hengyong Xu ◽  
...  

Author(s):  
Eric S. Schwenk ◽  
Marc C. Torjman ◽  
Ruin Moaddel ◽  
Jacqueline Lovett ◽  
Daniel Katz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document