A maize spermine synthase 1 PEST sequence fused to the GUS reporter protein facilitates proteolytic degradation

2014 ◽  
Vol 78 ◽  
pp. 80-87 ◽  
Author(s):  
Israel Maruri-López ◽  
Margarita Rodríguez-Kessler ◽  
Aída Araceli Rodríguez-Hernández ◽  
Alicia Becerra-Flora ◽  
Juan Elías Olivares-Grajales ◽  
...  
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6810 ◽  
Author(s):  
Adriana L. Salazar-Retana ◽  
Israel Maruri-López ◽  
Itzell E. Hernández-Sánchez ◽  
Alicia Becerra-Flora ◽  
María de la Luz Guerrero-González ◽  
...  

Dehydrins (DHNs) are intrinsically disordered proteins expressed under cellular dehydration-related stresses. In this study, we identified potential proteolytic PEST sequences located at the central and C-terminal regions from the Opuntia streptacantha OpsDHN1 protein. In order to evaluate these PEST sequences as proteolytic tags, we generated a translational fusion with the GUS reporter protein and OpsDHN1 coding sequence. We found a GUS degradation effect in tobacco agro-infiltrated leaves and Arabidopsis transgenic lines that expressed the fusion GUS::OpsDHN1 full-length. Also, two additional translational fusions between OpsDHN1 protein fragments that include the central (GUS::PEST-1) or the C-terminal (GUS::PEST-2) PEST sequences were able to decrease the GUS activity, with PEST-2 showing the greatest reduction in GUS activity. GUS signal was abated when the OpsDHN1 fragment that includes both PEST sequences (GUS::PEST-1-2) were fused to GUS. Treatment with the MG132 proteasome inhibitor attenuated the PEST-mediated GUS degradation. Point mutations of phosphorylatable residues in PEST sequences reestablished GUS signal, hence these sequences are important during protein degradation. Finally, in silico analysis identified potential PEST sequences in other plant DHNs. This is the first study reporting presence of PEST motifs in dehydrins.


Author(s):  
S. Trachtenberg ◽  
P.M. Steinert ◽  
B.L. Trus ◽  
A.C. Steven

During terminal differentiation of vertebrate epidermis, certain specific keratin intermediate filament (KIF) proteins are produced. Keratinization of the epidermis involves cell death and disruption of the cytoplasm, leaving a network of KIF embedded in an amorphous matrix which forms the outer horny layer known as the stratum corneum. Eventually these cells are shed (desquamation). Normally, the processes of differentiation, keratinization, and desquamation are regulated in an orderly manner. In psoriasis, a chronic skin disease, a hyperkeratotic stratum corneum is produced, resulting in abnormal desquamation of unusually large scales. In this disease, the normal KIF proteins are diminished in amount or absent, and other proteins more typical of proliferative epidermal cells are present. There is also evidence of proteolytic degradation of the KIF.


2019 ◽  
Author(s):  
Asha Philip ◽  
Jin Dai ◽  
Sarah Katen ◽  
John Patton

2021 ◽  
Author(s):  
Tan Liu ◽  
Xiaojie Ma ◽  
Jiahui Yu ◽  
Wensheng Yang ◽  
guiyang wang ◽  
...  

Lasso peptides are a unique family of natural products whose structures feature a specific threaded fold, which confers these peptides the resistance to thermal and proteolytic degradation. This stability gives...


1999 ◽  
Vol 40 (7) ◽  
pp. 1312-1316 ◽  
Author(s):  
Hideya Ando ◽  
Yoko Funasaka ◽  
Masahiro Oka ◽  
Akiko Ohashi ◽  
Minao Furumura ◽  
...  

Author(s):  
Qingchun Zhao ◽  
Zhenzhen Luo ◽  
Jiadong Chen ◽  
Hongfang Jia ◽  
Penghui Ai ◽  
...  

AbstractPhosphorus (P) deficiency is one of the major nutrient stresses restricting plant growth. The uptake of P by plants from soil is mainly mediated by the phosphate (Pi) transporters belonging to the PHT1 family. Multiple PHT1 genes from diverse plant species have been shown to be strongly up-regulated upon Pi starvation, however, the underlying mechanisms for the Pi-starvation-induced (PSI) up-regulation have not been well deciphered for most Pi transporter genes. Here, we reported a detailed dissection of the promoter activity of a PSI rice Pi transporter gene OsPT6, using the β-glucuronidase (GUS) reporter gene. OsPT6 promoter could drive GUS expression strongly in both roots and blades of rice plants grown under low P, but not high P. Cis-acting element analysis identified one copy of the P1BS motif and two copies of the W-box motif in OsPT6 promoter. Targeted deletion of the P1BS motif caused almost complete abolition of GUS induction in response to Pi starvation, irrespective of the presence or absence of the W-box motif, Four repeats of the P1BS motif fused to the CaMV35S minimal promoter was sufficient to induce GUS expression responsive to Pi starvation. Targeted deletion of the upstream W-box motif (W1) did not affect the GUS expression activity compared with the full-length OsPT6 promoter, while targeted deletion of the downstream W-box motif (W2) or both of the W-box motifs remarkably reduced the GUS induction rate upon Pi starvation. Our results proposed that the PSI response of OsPT6 was positively regulated by at least two elements, the sole P1BS and the downstream W-box, in its promoter, and the W-box-mediated up-regulation of OsPT6 might be highly dependent on the P1BS motif.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1946
Author(s):  
Nitin Chitranshi ◽  
Ashutosh Kumar ◽  
Samran Sheriff ◽  
Veer Gupta ◽  
Angela Godinez ◽  
...  

Amyloid precursor protein (APP), upon proteolytic degradation, forms aggregates of amyloid β (Aβ) and plaques in the brain, which are pathological hallmarks of Alzheimer’s disease (AD). Cathepsin B is a cysteine protease enzyme that catalyzes the proteolytic degradation of APP in the brain. Thus, cathepsin B inhibition is a crucial therapeutic aspect for the discovery of new anti-Alzheimer’s drugs. In this study, we have employed mixed-feature ligand-based virtual screening (LBVS) by integrating pharmacophore mapping, docking, and molecular dynamics to detect small, potent molecules that act as cathepsin B inhibitors. The LBVS model was generated by using hydrophobic (HY), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) features, using a dataset of 24 known cathepsin B inhibitors of both natural and synthetic origins. A validated eight-feature pharmacophore hypothesis (Hypo III) was utilized to screen the Maybridge chemical database. The docking score, MM-PBSA, and MM-GBSA methodology was applied to prioritize the lead compounds as virtual screening hits. These compounds share a common amide scaffold, and showed important interactions with Gln23, Cys29, His110, His111, Glu122, His199, and Trp221. The identified inhibitors were further evaluated for cathepsin-B-inhibitory activity. Our study suggests that pyridine, acetamide, and benzohydrazide compounds could be used as a starting point for the development of novel therapeutics.


Sign in / Sign up

Export Citation Format

Share Document