A natural indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis thaliana

2020 ◽  
Vol 151 ◽  
pp. 378-390 ◽  
Author(s):  
David López-González ◽  
Aitana Costas-Gil ◽  
Manuel J. Reigosa ◽  
Fabrizio Araniti ◽  
Adela M. Sánchez-Moreiras
2021 ◽  
Vol 22 (11) ◽  
pp. 5739
Author(s):  
Joo Yeol Kim ◽  
Hyo-Jun Lee ◽  
Jin A Kim ◽  
Mi-Jeong Jeong

Sound waves affect plants at the biochemical, physical, and genetic levels. However, the mechanisms by which plants respond to sound waves are largely unknown. Therefore, the aim of this study was to examine the effect of sound waves on Arabidopsis thaliana growth. The results of the study showed that Arabidopsis seeds exposed to sound waves (100 and 100 + 9k Hz) for 15 h per day for 3 day had significantly longer root growth than that in the control group. The root length and cell number in the root apical meristem were significantly affected by sound waves. Furthermore, genes involved in cell division were upregulated in seedlings exposed to sound waves. Root development was affected by the concentration and activity of some phytohormones, including cytokinin and auxin. Analysis of the expression levels of genes regulating cytokinin and auxin biosynthesis and signaling showed that cytokinin and ethylene signaling genes were downregulated, while auxin signaling and biosynthesis genes were upregulated in Arabidopsis exposed to sound waves. Additionally, the cytokinin and auxin concentrations of the roots of Arabidopsis plants increased and decreased, respectively, after exposure to sound waves. Our findings suggest that sound waves are potential agricultural tools for improving crop growth performance.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 249
Author(s):  
Weimiao Liu ◽  
Liai Xu ◽  
Hui Lin ◽  
Jiashu Cao

The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation.


Author(s):  
Yue Zhang ◽  
Yanhuang An ◽  
Ning Yang ◽  
Wei Wang ◽  
Ruirui Liu ◽  
...  

2019 ◽  
Vol 20 (23) ◽  
pp. 5933 ◽  
Author(s):  
Yuanyuan Jiang ◽  
Jiangrong Peng ◽  
Zhike Zhang ◽  
Shoukai Lin ◽  
Shunquan Lin ◽  
...  

Flowering plants have evolved different flowering habits to sustain long-term reproduction. Most woody trees experience dormancy and then bloom in the warm spring, but loquat blooms in the cold autumn and winter. To explore its mechanism of flowering regulation, we cloned two SHORT VEGETATIVE PHASE (SVP) homologous genes from ‘Jiefanzhong’ loquat (Eriobotrya japonica Lindl.), namely, EjSVP1 and EjSVP2. Sequence analysis revealed that the EjSVPs were typical MADS-box transcription factors and exhibited a close genetic relationship with other plant SVP/DORMANCY-ASSOCIATED MADS-BOX (DAM) proteins. The temporal and spatial expression patterns showed that EjSVP1 and EjSVP2 were mainly expressed in the shoot apical meristem (SAM) after the initiation of flowering; after reaching their highest level, they gradually decreased with the development of the flower until they could not be detected. EjSVP1 expression levels were relatively high in young tissues, and EjSVP2 expression levels were relatively high in young to mature transformed tissues. Interestingly, EjSVP2 showed relatively high expression levels in various flower tissues. We analyzed the EjSVP promoter regions and found that they did not contain the C-repeat/dehydration-responsive element. Finally, we overexpressed the EjSVPs in wild-type Arabidopsis thaliana Col-0 and found no significant changes in the number of rosette leaves of Arabidopsis thaliana; however, overexpression of EjSVP2 affected the formation of Arabidopsis thaliana flower organs. In conclusion, EjSVPs were found to play an active role in the development of loquat flowering. These findings may provide a reference for exploring the regulation mechanisms of loquat flowering and the dormancy mechanisms of other plants.


2014 ◽  
Vol 66 (1) ◽  
pp. 71-83 ◽  
Author(s):  
Tania V. Humphrey ◽  
Katrina E. Haasen ◽  
May Grace Aldea-Brydges ◽  
He Sun ◽  
Yara Zayed ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Adrienne H. K. Roeder

Abstract During development, Arabidopsis thaliana sepal primordium cells grow, divide and interact with their neighbours, giving rise to a sepal with the correct size, shape and form. Arabidopsis sepals have proven to be a good system for elucidating the emergent processes driving morphogenesis due to their simplicity, their accessibility for imaging and manipulation, and their reproducible development. Sepals undergo a basipetal gradient of growth, with cessation of cell division, slow growth and maturation starting at the tip of the sepal and progressing to the base. In this review, I discuss five recent examples of processes during sepal morphogenesis that yield emergent properties: robust size, tapered tip shape, laminar shape, scattered giant cells and complex gene expression patterns. In each case, experiments examining the dynamics of sepal development led to the hypotheses of local rules. In each example, a computational model was used to demonstrate that these local rules are sufficient to give rise to the emergent properties of morphogenesis.


2018 ◽  
Author(s):  
Nadia Bouain ◽  
Arthur Korte ◽  
Santosh B. Satbhai ◽  
Seung Y. Rhee ◽  
Wolfgang Busch ◽  
...  

AbstractThe molecular genetic mechanisms by which plants modulate their root growth rate (RGR) in response to nutrient deficiency are largely unknown. Using a panel of Arabidopsis thaliana natural accessions, we provide a comprehensive combinatorial analysis of RGR variation under macro- and micronutrient deficiency, namely phosphorus (P), iron (Fe), and zinc (Zn), which affect root growth in opposite directions. We found that while -P stimulates early RGR of most accessions, -Fe or -Zn reduces it. The combination of either -P-Fe or -P-Zn leads to suppression of the growth inhibition exerted by -Fe or -Zn alone. Surprisingly, Arabidopsis reference accession Columbia (Col-0) is not representative of the species under -P and -Zn. Using a genome wide association study, we identify candidate genes that control RGR under the assayed nutrient deficiency conditions. By using a network biology driven search using these candidate genes, we further identify a functional module enriched in regulation of cell cycle, DNA replication and chromatin modification that possibly underlies the suppression of root growth reduction in -P-Fe conditions. Collectively, our findings provide a framework for understanding the regulation of RGR under nutrient deficiency, and open new routes for the identification of both large effect genes and favorable allelic variations to improve root growth.


Planta ◽  
2011 ◽  
Vol 234 (6) ◽  
pp. 1163-1177 ◽  
Author(s):  
Alejandra Hernández-Barrera ◽  
Yamel Ugartechea-Chirino ◽  
Svetlana Shishkova ◽  
Selene Napsucialy-Mendivil ◽  
Aleš Soukup ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document