Genome-wide identification reveals the function of CEP peptide in cucumber root development

Author(s):  
Yiting Liu ◽  
Tingting Zuo ◽  
Ziwen Qiu ◽  
Keqing Zhuang ◽  
Songping Hu ◽  
...  
2021 ◽  
Vol 290 ◽  
pp. 110498
Author(s):  
Yongjie Ma ◽  
Zhiqian Lan ◽  
Kaige Zhang ◽  
Bangyao Li ◽  
Wende Zheng ◽  
...  

2013 ◽  
Vol 46 (1) ◽  
pp. 77-81 ◽  
Author(s):  
Mónica Meijón ◽  
Santosh B Satbhai ◽  
Takashi Tsuchimatsu ◽  
Wolfgang Busch

Planta ◽  
2019 ◽  
Vol 250 (4) ◽  
pp. 1051-1072 ◽  
Author(s):  
Pengcheng Guo ◽  
Jing Wen ◽  
Jin Yang ◽  
Yunzhuo Ke ◽  
Mangmang Wang ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 613 ◽  
Author(s):  
Rubén Rufo ◽  
Silvio Salvi ◽  
Conxita Royo ◽  
Jose Soriano

Background: Roots are essential for drought adaptation because of their involvement in water and nutrient uptake. As the study of the root system architecture (RSA) is costly and time-consuming, it is not generally considered in breeding programs. Thus, the identification of molecular markers linked to RSA traits is of special interest to the breeding community. The reported correlation between the RSA of seedlings and adult plants simplifies its assessment. Methods: In this study, a panel of 170 bread wheat landraces from 24 Mediterranean countries was used to identify molecular markers associated with the seminal RSA and related traits: seminal root angle, total root number, root dry weight, seed weight and shoot length, and grain yield (GY). Results: A genome-wide association study identified 135 marker-trait associations explaining 6% to 15% of the phenotypic variances for root related traits and 112 for GY. Fifteen QTL hotspots were identified as the most important for controlling root trait variation and were shown to include 31 candidate genes related to RSA traits, seed size, root development, and abiotic stress tolerance (mainly drought). Co-location for root related traits and GY was found in 17 genome regions. In addition, only four out of the fifteen QTL hotspots were reported previously. Conclusions: The variability found in the Mediterranean wheat landraces is a valuable source of root traits to introgress into adapted phenotypes through marker-assisted breeding. The study reveals new loci affecting root development in wheat.


2009 ◽  
Vol 3 (6) ◽  
pp. 279-281 ◽  
Author(s):  
Pala Surya Priya ◽  
A. Snehalatha ◽  
U. Kayalvili ◽  
A.R. Krishna ◽  
Sukpal Singh ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2569
Author(s):  
Sani Ibrahim ◽  
Keqi Li ◽  
Nazir Ahmad ◽  
Lieqiong Kuang ◽  
Salisu Bello Sadau ◽  
...  

Roots are complicated quantitative characteristics that play an essential role in absorbing water and nutrients. To uncover the genetic variations for root-related traits in rapeseed, twelve mature root traits of a Brassica napus association panel were investigated in the field within three environments. All traits showed significant phenotypic variation among genotypes, with heritabilities ranging from 55.18% to 79.68%. Genome-wide association studies (GWAS) using 20,131 SNPs discovered 172 marker-trait associations, including 103 significant SNPs (−log10 (p) > 4.30) that explained 5.24–20.31% of the phenotypic variance. With the linkage disequilibrium r2 > 0.2, these significant associations were binned into 40 quantitative trait loci (QTL) clusters. Among them, 14 important QTL clusters were discovered in two environments and/or with phenotypic contributions greater than 10%. By analyzing the genomic regions within 100 kb upstream and downstream of the peak SNPs within the 14 loci, 334 annotated genes were found. Among these, 32 genes were potentially associated with root development according to their expression analysis. Furthermore, the protein interaction network using the 334 annotated genes gave nine genes involved in a substantial number of interactions, including a key gene associated with root development, BnaC09g36350D. This research provides the groundwork for deciphering B. napus’ genetic variations and improving its root system architecture.


Sign in / Sign up

Export Citation Format

Share Document