Genetic structure and molecular markers-trait association for physiological traits related to seed vigour in rice

Plant Gene ◽  
2021 ◽  
pp. 100338
Author(s):  
Priyadarsini Sanghamitra ◽  
Nibedita Nanda ◽  
Saumya Ranjan Barik ◽  
Swastideepa Sahoo ◽  
Elssa Pandit ◽  
...  
2013 ◽  
Vol 43 (6) ◽  
pp. 978-984 ◽  
Author(s):  
Vanice Dias Oliveira ◽  
Allivia Rouse Carregosa Rabbani ◽  
Ana Veruska Cruz da Silva ◽  
Ana da Silva Lédo

This research had as objective to characterize genetically individuals of physic nut cultivated in experimental areas in Sergipe, Brazil by means of RAPD molecular markers. Leaves of 40 individuals were collected and DNA was isolated using CTAB 2% method. Were used 30 primers RAPD for DNA amplification, and this data was used to estimate the genetic similarity among the pairs of individuals, using Jaccard coefficient, and group them out for the UPGMA method. Also, the genetic structure and diversity of the populations were assessed using AMOVA. Of the 100 fragments generated, 29 of were polymorphic. A similarity average of 0.54 among the individuals was found and the amplitude similarities varied from 0.18 to 1.00. One of them (U5) was unit clusters and formed by the most divergent individuals. AMOVA indicated that there is more variation within (63%) the population. In conclusion, it was possible verify genetic variability in physic nut using RAPD markers at these experimental areas.


2021 ◽  
pp. 33-62
Author(s):  
Enéas Ricardo Konzen ◽  
Luciano Cesar Pozzobon ◽  
Denys Matheus Santana Costa Souza ◽  
Sérgio Bruno Fernandes ◽  
Wellington Ferreira Campos ◽  
...  

Phytotaxa ◽  
2018 ◽  
Vol 376 (4) ◽  
pp. 154 ◽  
Author(s):  
MEGHDAD MAGHSOODI ◽  
MASOUD SHEIDAI ◽  
FAHIMEH KOOHDAR

Juglans regia commonly known as Persian walnut of the genus Juglans (Juglandaceae) is cultivated throughout the temperate regions of the world for its high quality wood and edible nuts. Though Persian walnut grows on 70,000 ha in Iran, we have no detailed information on genetic structure of walnut cultivars in the country. A detailed knowledge of genetic diversity and spatial genetic structure is essential for conservation and management of tree species. The species like Persian walnut, which has wide range of geographical distribution, should harbor extensive genetic variability to adapt to environmental fluctuations they face. Therefore, detailed population genetic study of local populations become important for conservation and breeding studies. The main aim of the present study was to investigate the population genetic structure of seven Persian walnut populations including 3 wild and 4 cultivated populations by using ISSR and SRAP molecular markers. We also aimed to compare the genetic variability revealed by ISSR neutral multilocus marker and nrDNA ITS sequences. Finally, we tried to investigate the species relationship within the genus Juglans L. by using molecular phylogeny methods based on nrDNA ITS sequences. The results showed that both multilocus molecular markers and ITS sequences can differentiate Persian walnut populations. The studied populations differed genetically and showed isolation by distance (IBD).


2010 ◽  
Vol 46 (Special Issue) ◽  
pp. S54-S56 ◽  
Author(s):  
J. Cunha ◽  
M. Teixeira Santos ◽  
J. Brazăo ◽  
L.C. Carneiro ◽  
M. Veloso ◽  
...  

To assess the different origins of Portuguese grapevine varieties, we used six nuclear and four chloroplastidal microsatellites as molecular markers, in order to compare the genetic structure of native wild-vines with native grapevine varieties. Both native subspecies have a great diversity, and a high interrelationship across the six nuclear microsatellites. Although identical numbers of alleles were found in each population, their distribution was different in the <I>vinifera </I>and <I>sylvestris </I>subspecies. Portuguese wild-vines have only chlorotypes A and B; A being the most frequent. The fifty-seven analysed Portuguese varieties have chlorotypes A, B, C, and D. The most frequent was the chlorotype A (75%), followed by D (21%). The results obtained reinforced the idea of Western Europe as having been one of the domestication centres for the grapevine, with contributions from the Eastern European gene pool. The observed genetic structure is a starting point from which to clarify the high number of native cultivars found in Portugal, and reinforces their probable origin in the Iberian Peninsula.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 192 ◽  
Author(s):  
Abdulwahab S. Shaibu ◽  
Clay Sneller ◽  
Babu N. Motagi ◽  
Jackline Chepkoech ◽  
Mercy Chepngetich ◽  
...  

In order to integrate genomics in breeding and development of drought-tolerant groundnut genotypes, identification of genomic regions/genetic markers for drought surrogate traits is essential. We used 3249 diversity array technology sequencing (DArTSeq) markers for a genetic analysis of 125 ICRISAT groundnut mini core collection evaluated in 2015 and 2017 for genome-wide marker-trait association for some physiological traits and to determine the magnitude of linkage disequilibrium (LD). Marker-trait association (MTA) analysis, probability values, and percent variation modelled by the markers were calculated using the GAPIT package via the KDCompute interface. The LD analysis showed that about 36% of loci pairs were in significant LD (p < 0.05 and r2 > 0.2) and 3.14% of the pairs were in complete LD. The MTAs studies revealed 20 significant MTAs (p < 0.001) with 11 markers. Four MTAs were identified for leaf area index, 13 for canopy temperature, one for chlorophyll content and two for normalized difference vegetation index. The markers explained 20.8% to 6.6% of the phenotypic variation observed. Most of the MTAs identified on the A subgenome were also identified on the respective homeologous chromosome on the B subgenome. This could be due to a common ancestor of the A and B genome which explains the linkage detected between markers lying on different chromosomes. The markers identified in this study can serve as useful genomic resources to initiate marker-assisted selection and trait introgression of groundnut for drought tolerance after further validation.


2016 ◽  
Vol 15 (6) ◽  
pp. 539-547 ◽  
Author(s):  
P. Sharma ◽  
S. Sareen ◽  
M. Saini ◽  
Shefali

AbstractHeat stress greatly limits the productivity of wheat in many regions. Knowledge on the degree of genetic diversity of wheat varieties along with their selective traits will facilitate the development of high yielding, stress-tolerant wheat cultivar. The objective of this study were to determine genetic variation in morpho-physiological traits associated with heat tolerance in 30 diverse wheat genotypes and to examine genetic diversity and relationship among the genotypes varying heat tolerance using molecular markers. Phenotypic data of 15 traits were evaluated for heat tolerance under non-stress and stress conditions for two consecutive years. A positive and significant correlation among cell membrane stability, canopy temperature depression, biomass, susceptibility index and grain yield was shown. Genetic diversity assessed by 41 polymorphic simple sequence repeat (SSR) markers was compared with diversity evaluated for 15 phenotypic traits averaged over stress and non-stress field conditions. The mean polymorphic information content for SSR value was 0.38 with range of 0.12–0.75. Based on morpho-physiological traits and genotypic data, three groups were obtained based on their tolerance (HHT, MHT and LHT) levels. Analysis of molecular variance explained 91.7% of the total variation could be due to variance within the heat tolerance genotypes. Genetic diversity among HHT was higher than LHT genotypes and HHT genotypes were distributed among all cluster implied that genetic basis of heat tolerance in these genotypes was different thereby enabling the wheat breeders to combine these diverse sources of genetic variation to improve heat tolerance in wheat breeding programme.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0167723 ◽  
Author(s):  
Peri E. Bolton ◽  
Andrea J. West ◽  
Adam P. A. Cardilini ◽  
Jennalee A. Clark ◽  
Kimberley L. Maute ◽  
...  

F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 66 ◽  
Author(s):  
Javier Monzón

Previous genetic studies of eastern coyotes (Canis latrans) are based on one of two strategies: sampling many individuals using one or very few molecular markers, or sampling very few individuals using many genomic markers. Thus, a regional analysis of genetic diversity and population structure in eastern coyotes using many samples and several molecular markers is lacking. I evaluated genetic diversity and population structure in 385 northeastern coyotes using 16 common single nucleotide polymorphisms (SNPs). A region-wide analysis of population structure revealed three primary genetic populations, but these do not correspond to the same three subdivisions inferred in a previous analysis of mitochondrial DNA sequences. More focused geographic analyses of population structure indicated that ample genetic structure occurs in coyotes from an intermediate contact zone where two range expansion fronts meet. These results demonstrate that genotyping several highly heterozygous SNPs in a large, geographically dense sample is an effective way to detect cryptic population genetic structure. The importance of SNPs in studies of population and wildlife genomics is rapidly increasing; this study adds to the growing body of recent literature that demonstrates the utility of SNPs ascertained from a model organism for evolutionary inference in closely related species.


Sign in / Sign up

Export Citation Format

Share Document