Ultrafine grained metals and metal matrix nanocomposites fabricated by powder processing and thermomechanical powder consolidation

2021 ◽  
Vol 119 ◽  
pp. 100796
Author(s):  
Deliang Zhang
2006 ◽  
Vol 326-328 ◽  
pp. 325-328 ◽  
Author(s):  
Quang Pham ◽  
Young Gi Jeong ◽  
Soon Hyung Hong ◽  
Hyoung Seop Kim

In this study, powder processing and severe plastic deformation (SPD) approaches were combined in order to achieve both full density and good particle-matrix bonding in CNT and Cu powder mixtures without grain growth, which was considered as a bottle neck of the bottom-up method in the conventional powder metallurgy of compaction and sintering. Equal channel angular pressing (ECAP), one of the most promising methods in SPD, was used for the powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 passes was conducted at room temperature. It was found by microhardness tests and microstructure characterization that relatively high mechanical strength could be effectively achieved as a result of the well bonded powder contact surface during powder ECAP. The SPD processing of powders is a viable method to achieve both fully density and good particle bonding in CNT-metal matrix nanocomposites.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 125
Author(s):  
Seyed Kiomars Moheimani ◽  
Mehran Dadkhah ◽  
Mohammad Hossein Mosallanejad ◽  
Abdollah Saboori

Metal matrix nanocomposites (MMNCs) with high specific strength have been of interest for numerous researchers. In the current study, Mg matrix nanocomposites reinforced with AlN nanoparticles were produced using the mechanical stirring-assisted casting method. Microstructure, hardness, physical, thermal and electrical properties of the produced composites were characterized in this work. According to the microstructural evaluations, the ceramic nanoparticles were uniformly dispersed within the matrix by applying a mechanical stirring. At higher AlN contents, however, some agglomerates were observed as a consequence of a particle-pushing mechanism during the solidification. Microhardness results showed a slight improvement in the mechanical strength of the nanocomposites following the addition of AlN nanoparticles. Interestingly, nanocomposite samples were featured with higher electrical and thermal conductivities, which can be attributed to the structural effect of nanoparticles within the matrix. Moreover, thermal expansion analysis of the nanocomposites indicated that the presence of nanoparticles lowered the Coefficient of Thermal Expansion (CTE) in the case of nanocomposites. All in all, this combination of properties, including high mechanical strength, thermal and electrical conductivity, together with low CTE, make these new nanocomposites very promising materials for electro packaging applications.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1034
Author(s):  
Massoud Malaki ◽  
Alireza Fadaei Tehrani ◽  
Behzad Niroumand ◽  
Manoj Gupta

Metal matrix composites (MMCs) have been developed in response to the enormous demand for special industrial materials and structures for automotive and aerospace applications, wherein both high-strength and light weight are simultaneously required. The most common, inexpensive route to fabricate MMCs or metal matrix nanocomposites (MMNCs) is based on casting, wherein reinforcements like nanoceramics, -carbides, -nitrides, elements or carbon allotropes are added to molten metal matrices; however, most of the mentioned reinforcements, especially those with nanosized reinforcing particles, have usually poor wettability with serious drawbacks like particle agglomerations and therefore diminished mechanical strength is almost always expected. Many research efforts have been made to enhance the affinity between the mating surfaces. The aim in this paper is to critically review and comprehensively discuss those approaches/routes commonly employed to boost wetting conditions at reinforcement-matrix interfaces. Particular attention is paid to aluminum matrix composites owing to the interest in lightweight materials and the need to enhance the mechanical properties like strength, wear, or creep resistance. It is believed that effective treatment(s) may enormously affect the wetting and interfacial strength.


2016 ◽  
Vol 32 (9) ◽  
pp. 930-953 ◽  
Author(s):  
Z. Hu ◽  
G. Tong ◽  
D. Lin ◽  
C. Chen ◽  
H. Guo ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Payodhar Padhi ◽  
Sachikanta Kar

Addition of nano particles, even in quantities as small as 2 weight percent can enhance the hardness or yield strength by a factor as high as 2. There are several methods for the production of metal matrix nanocomposites including mechanical alloying, vertex process, and spray deposition and so forth. However, the above processes are expensive. Solidification processing is a relatively cheaper route. During solidification processing, nano particulates tend to agglomerate as a result of van der Waals forces and thus proper dispersion of the nano particulate in metal matrix is a challenge. In the present study a noncontact method, where the ultrasonic probe is not in direct contact with the liquid metal, was attempted to disperse nanosized SiC particulates in aluminum matrix. In this method, the mold was subjected to ultrasonic vibration. Hardness measurements and microstructural studies using HRTEM were carried out on samples taken from different locations of the nanocomposite ingot cast by this method.


Sign in / Sign up

Export Citation Format

Share Document