Adaptive Motor Sports: A New Therapeutic Modality in Amputee Rehabilitation

PM&R ◽  
2013 ◽  
Vol 5 ◽  
pp. S144-S145
Author(s):  
Jeffrey Heckman ◽  
Elana Hartman
1993 ◽  
Vol 9 (4) ◽  
pp. 731-743 ◽  
Author(s):  
Alberto Esquenazi

2021 ◽  
Vol 22 ◽  
Author(s):  
Maria Bernadete Riemma Pierre

Abstract: Photodynamic Therapy (PDT) is a therapeutic modality used for several malignant and premalignant skin disor-ders, including Bowen's disease skin cancers and Superficial Basal Cell Carcinoma (BCC). Several photosensitizers (PSs) have been explored for tumor destruction of skin cancers, after their activation by a light source of appropriate wavelength. Topical release of PSs avoids prolonged photosensitization reactions associated with systemic administration; however, its clinical usefulness is influenced by its poor tissue penetration and the stability of the active agent. Nanotechnology-based drug delivery systems are promising tool to enhance the efficiency for PDT of cancer. This review focuses on PSs encap-sulated in nanocarriers explored for PDT of skin tumors.


2016 ◽  
Vol 14 (2) ◽  
pp. 240-249 ◽  
Author(s):  
Bentham Science Publisher Marya ◽  
Haroon Khan

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fereidoun Azizi ◽  
Hengameh Abdi ◽  
Atieh Amouzegar

Abstract Background Long-term antithyroid drug therapy has become one of the options for treatment of Graves’ hyperthyroidism. The aim of this study was to compare thyroid status in those who discontinued methimazole (MMI) treatment after 12.8 years with those who continued MMI as long as 24 years. Methods Fifty nine patients with Graves’ disease on long-term MMI for 14.2 ± 2.9 years were recruited; 32 patients (54%) decided to discontinue MMI and 27 (46%) preferred additional years of MMI treatment. All patients were followed for a mean of 6 additional years. Results Of 27 patients who continued MMI up to 24 years, suppressed serum thyrotropin (TSH) was not observed in any patient after the seventh year of treatment. Serum free thyroxine, triiodothyronine, TSH and TSH receptor antibody concentrations remained normal up to the length of the study. Mean daily dose of MMI to maintain TSH in the reference range decreased gradually and reached to 2.8 ± 1.7 mg by 24 years of MMI treatment. No adverse reaction related to MMI occured during additional years of therapy. In 32 patients who discontinued MMI, hyperthyroidism relapsed in 6 patients (19%), one left follow-up and 25 (78%) remained euthyroid during the study. Conclusions Long-term low dose MMI treatment may be a lifelong effective and safe therapeutic modality in patients with Graves’ hyperthyroidism for prevention of relapse, if studies from other centers confirm findings of this research. Trial registration IRCT201009224794N1, 2010-10-25. Retrospectively registered. https://www.irct.ir/trial/5143.


Toxins ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Charenya Anandan ◽  
Joseph Jankovic

Since its initial approval in 1989 by the US Food and Drug Administration for the treatment of blepharospasm and other facial spasms, botulinum toxin (BoNT) has evolved into a therapeutic modality for a variety of neurological and non-neurological disorders. With respect to neurologic movement disorders, BoNT has been reported to be effective for the treatment of dystonia, bruxism, tremors, tics, myoclonus, restless legs syndrome, tardive dyskinesia, and a variety of symptoms associated with Parkinson’s disease. More recently, research with BoNT has expanded beyond its use as a powerful muscle relaxant and a peripherally active drug to its potential central nervous system applications in the treatment of neurodegenerative disorders. Although BoNT is the most potent biologic toxin, when it is administered by knowledgeable and experienced clinicians, it is one of the safest therapeutic agents in clinical use. The primary aim of this article is to provide an update on recent advances in BoNT research with a focus on novel applications in the treatment of movement disorders. This comprehensive review of the literature provides a critical review of evidence-based clinical trials and highlights recent innovative pilot studies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinyoung Kim ◽  
Kihyoun Park ◽  
Min Jung Kim ◽  
Hyejin Lim ◽  
Kook Hwan Kim ◽  
...  

AbstractWe have reported that autophagy is crucial for clearance of amyloidogenic human IAPP (hIAPP) oligomer, suggesting that an autophagy enhancer could be a therapeutic modality against human diabetes with amyloid accumulation. Here, we show that a recently identified autophagy enhancer (MSL-7) reduces hIAPP oligomer accumulation in human induced pluripotent stem cell-derived β-cells (hiPSC-β-cells) and diminishes oligomer-mediated apoptosis of β-cells. Protective effects of MSL-7 against hIAPP oligomer accumulation and hIAPP oligomer-mediated β-cell death are significantly reduced in cells with knockout of MiTF/TFE family members such as Tfeb or Tfe3. MSL-7 improves glucose tolerance and β-cell function of hIAPP+ mice on high-fat diet, accompanied by reduced hIAPP oligomer/amyloid accumulation and β-cell apoptosis. Protective effects of MSL-7 against hIAPP oligomer-mediated β-cell death and the development of diabetes are also significantly reduced by β-cell-specific knockout of Tfeb. These results suggest that an autophagy enhancer could have therapeutic potential against human diabetes characterized by islet amyloid accumulation.


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 680
Author(s):  
Sung-Woon On ◽  
Seoung-Won Cho ◽  
Soo-Hwan Byun ◽  
Byoung-Eun Yang

Medication-related osteonecrosis of the jaw (MRONJ) is one of the most interesting diseases in the field of maxillofacial surgery. In addition to bisphosphonates, the use of antiresorptive and antiangiogenic agents is known to be the leading cause. However, the exact pathogenesis of MRONJ has not been established, and various hypotheses have been proposed, such as oxidative stress-related theory. As a result, a definitive treatment protocol for MRONJ has not been identified, while various therapeutic approaches are applied to manage patients with MRONJ. Although the surgical approach to treat osteomyelitis of the jaw has been proven to be most effective, there are limitations, such as recurrence and delayed healing. Many studies and clinical trials are being conducted to develop another effective therapeutic modality. The use of some materials, including platelet concentrates and bone morphogenetic proteins, showed a positive effect on MRONJ. Among them, teriparatide is currently the most promising material, and it has shown encouraging results when applied to patients with MRONJ. Furthermore, cell therapy using mesenchymal stem cells showed promising results, and it can be the new therapeutic approach for the treatment of MRONJ. This review presents various treatment methods for MRONJ and their limitations while investigating newly developed and researched molecular and cellular therapeutic approaches along with a literature review.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 268
Author(s):  
Jonathan Ribot ◽  
Cyprien Denoeud ◽  
Guilhem Frescaline ◽  
Rebecca Landon ◽  
Hervé Petite ◽  
...  

Bone marrow-derived multipotent stromal cells (BMMSCs) represent an attractive therapeutic modality for cell therapy in type 2 diabetes mellitus (T2DM)-associated complications. T2DM changes the bone marrow environment; however, its effects on BMMSC properties remain unclear. The present study aimed at investigating select functions and differentiation of BMMSCs harvested from the T2DM microenvironment as potential candidates for regenerative medicine. BMMSCs were obtained from Zucker diabetic fatty (ZDF; an obese-T2DM model) rats and their lean littermates (ZL; controls), and cultured under normoglycemic conditions. The BMMSCs derived from ZDF animals were fewer in number, with limited clonogenicity (by 2-fold), adhesion (by 2.9-fold), proliferation (by 50%), migration capability (by 25%), and increased apoptosis rate (by 2.5-fold) compared to their ZL counterparts. Compared to the cultured ZL-BMMSCs, the ZDF-BMMSCs exhibited (i) enhanced adipogenic differentiation (increased number of lipid droplets by 2-fold; upregulation of the Pparg, AdipoQ, and Fabp genes), possibly due to having been primed to undergo such differentiation in vivo prior to cell isolation, and (ii) different angiogenesis-related gene expression in vitro and decreased proangiogenic potential after transplantation in nude mice. These results provided evidence that the T2DM environment impairs BMMSC expansion and select functions pertinent to their efficacy when used in autologous cell therapies.


Sign in / Sign up

Export Citation Format

Share Document