Nano-adsorbents control surface properties of polyurethane

Polymer ◽  
2007 ◽  
Vol 48 (20) ◽  
pp. 6049-6055 ◽  
Author(s):  
SuPing Lyu ◽  
Thomas Grailer ◽  
Anna Belu ◽  
James Schley ◽  
Terri Bartlett ◽  
...  
CIRP Annals ◽  
2015 ◽  
Vol 64 (1) ◽  
pp. 193-196 ◽  
Author(s):  
L. Orazi ◽  
Ia. Gnilitskyi ◽  
I. Pavlov ◽  
A.P. Serro ◽  
S. Ilday ◽  
...  

2010 ◽  
Vol 1272 ◽  
Author(s):  
Hyun Park ◽  
Yoo-Jin An ◽  
Sung Yun Yang

AbstractRecently, more studies have been conducted in chemical and biological applications using microfluidic or nanofluidic devices.1 Polymer-based materials have been newly developed in this field due to the great needs of easy processing, cost-effectiveness and clarity for the material. However, it is still challenging to control of the surface properties of these devices on demand. Especially, for biological analysis or detection, micro-fluidics should handle aqueous samples but, most of the current materials in use for micro-fluidic devices are relatively hydrophobic (such as PDMS, PMMA and cyclo-olefin-co polymer, etc). Therefore, they usually need an extra assistance rather than a capillary force to flow the aqueous samples. In this paper, we utilized layer-by-layer deposition of polymer to modify the surface of the micro-channel of the device in order to control surface properties of the micro-channel. We have been studied polyelectrolyte multilayer(PEM) coatings to control surface wettability of the open structures and found various hydrophilic films. Here we demonstrate polyelectrolyte multilayer film as an effective coating for inner surface of micro-fluidic devices to lowering the water contact angle, so that the aqueous fluid will travel smoothly with the channels. Compared to the other surface treatment method such as base cleaning or plasma irradiation, the PEM coating exhibit highly sustained water wettability. Polyelectrolytes used for this study are weak polyelectrolytes including biodegradable polymer such as poly(hyaluronic acid) (HA) for future biological applications.


2020 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Filipa Freitas ◽  
Teresa Pinheiro de Melo ◽  
António HS Delgado ◽  
Paulo Monteiro ◽  
João Rua ◽  
...  

Surface properties of composites such as roughness and color impact periodontal health and aesthetic outcomes. Novel bulk-fill composites with improved functionality are being introduced and, in light of the existing variety of finishing/polishing procedures, research of their surface properties is warranted. Sixty discs were prepared from bulk-fill composites (Filtek™ Bulk Fill Posterior Restorative and Fill-Up™) and incremental-fill Filtek™ Z250. They were further divided according to different polishing procedures (n = 5): three multi-step polishing procedures or finishing with a bur (control). Surface roughness (Ra) was measured using an atomic force microscope (The AFM Workshop TT-AFM). A spectrophotometer (Spectroshade Micro Optic) was used to determine color stability, after exposure to a coffee solution. Data were analyzed using two-way MANOVA (significance level of 5%). Resin composite type, polishing procedure, and their interaction had a statistically significant effect on surface roughness (p < 0.001) and color change (p < 0.001). Fill-Up™ exhibited the highest surface roughness and greatest color change. Differences in color change were statistically significant (p < 0.001). Filtek™ Bulk Fill registered the lowest surface roughness and color change, after the three-step polishing procedure. Both parameters were significantly correlated (ρ = 0.754, p < 0.001) and found to be material dependent and polishing-procedure dependent. Higher surface roughness relates to greater color changes.


2001 ◽  
Vol 285 (1-3) ◽  
pp. 29-36 ◽  
Author(s):  
Catherine A Morris ◽  
Debra R Rolison ◽  
Karen E Swider-Lyons ◽  
Elizabeth J Osburn-Atkinson ◽  
Celia I Merzbacher

2016 ◽  
Vol 4 (31) ◽  
pp. 5299-5307 ◽  
Author(s):  
Manju Saraswathy ◽  
Jeffrey Stansbury ◽  
Devatha Nair

Amphiphilic, water-dispersible, crosslinked siloxane nanogels were synthesized and applied as optically clear, functional coatings on the surface of lens substrates to demonstrate the feasibility of siloxane-nanogels to generate covalently tethered coatings and modify the surface properties of intraocular lens substrates.


2018 ◽  
Vol 122 (16) ◽  
pp. 4481-4490 ◽  
Author(s):  
Adriana R. Kyvik ◽  
Carlos Luque-Corredera ◽  
Daniel Pulido ◽  
Miriam Royo ◽  
Jaume Veciana ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2347 ◽  
Author(s):  
Anita Rozmysłowska-Wojciechowska ◽  
Joanna Mitrzak ◽  
Aleksandra Szuplewska ◽  
Michał Chudy ◽  
Jarosław Woźniak ◽  
...  

Current trends in the field of MXenes emphasize the importance of controlling their surface features for successful application in biotechnological areas. The ability to stabilize the surface properties of MXenes has been demonstrated here through surface charge engineering. It was thus determined how changing the surface charges of two-dimensional (2D) Ti3C2 MXene phase flakes using cationic polymeric poly-L-lysine (PLL) molecules affects the colloidal and biological properties of the resulting hybrid 2D nanomaterial. Electrostatic adsorption of PLL on the surface of delaminated 2D Ti3C2 flakes occurs efficiently, leads to changing an MXene’s negative surface charge toward a positive value, which can also be effectively managed through pH changes. Analysis of bioactive properties revealed additional antibacterial functionality of the developed 2D Ti3C2/PLL MXene flakes concerning Escherichia. coli Gram-negative bacteria cells. A reduction of two orders of magnitude of viable cells was achieved at a concentration of 200 mg L−1. The in vitro analysis also showed lowered toxicity in the concentration range up to 375 mg L−1. The presented study demonstrates a feasible approach to control surface properties of 2D Ti3C2 MXene flakes through surface charge engineering which was also verified in vitro for usage in biotechnology or nanomedicine applications.


Author(s):  
D.C. Hixson ◽  
J.C. Chan ◽  
J.M. Bowen ◽  
E.F. Walborg

Several years ago Karasaki (1) reported the production of type C virus particles by Novikoff ascites hepatocarcinoma cells. More recently, Weinstein (2) has reported the presence of type C virus particles in cell cultures derived from transplantable and primary hepatocellular carcinomas. To date, the biological function of these virus and their significance in chemically induced hepatocarcinogenesis are unknown. The present studies were initiated to determine a possible role for type C virus particles in chemically induced hepatocarcinogenesis. This communication describes results of studies on the biological and surface properties of type C virus associated with Novikoff hepatocarcinoma cells.Ecotropic and xenotropic murine leukemia virus (MuLV) activity in ascitic fluid of Novikoff tumor-bearing rats was assayed in murine sarcoma virus transformed S+L- mouse cells and S+L- mink cells, respectively. The presence of sarcoma virus activity was assayed in non-virus-producing normal rat kidney (NRK) cells. Ferritin conjugates of concanavalin A (Fer-Con wheat germ agglutinin (Fer-WGA), and Ricinus communis agglutinins I and II (Fer-RCAI and Fer-RCAII) were used to probe the structure and topography of saccharide determinants present on the viral envelope.


Author(s):  
L. S. Lin ◽  
K. P. Gumz ◽  
A. V. Karg ◽  
C. C. Law

Carbon and temperature effects on carbide formation in the carburized zone of M50NiL are of great importance because they can be used to control surface properties of bearings. A series of homogeneous alloys (with M50NiL as base composition) containing various levels of carbon in the range of 0.15% to 1.5% (in wt.%) and heat treated at temperatures between 650°C to 1100°C were selected for characterizations. Eleven samples were chosen for carbide characterization and chemical analysis and their identifications are listed in Table 1.Five different carbides consisting of M6C, M2C, M7C3 and M23C6 were found in all eleven samples examined as shown in Table 1. M6C carbides (with least carbon) were found to be the major carbide in low carbon alloys (<0.3% C) and their amounts decreased as the carbon content increased. In sample C (0.3% C), most particles (95%) encountered were M6C carbide with a particle sizes range between 0.05 to 0.25 um. The M6C carbide are enriched in both Mo and Fe and have a fee structure with lattice parameter a=1.105 nm (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document