Aromatic thermosetting copolyester nanocomposite foams: High thermal and mechanical performance lightweight structural materials

Polymer ◽  
2017 ◽  
Vol 123 ◽  
pp. 311-320 ◽  
Author(s):  
Mete Bakir ◽  
Jacob L. Meyer ◽  
James Economy ◽  
Iwona Jasiuk
Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 249 ◽  
Author(s):  
Long Wang ◽  
Kiyomi Okada ◽  
Yuta Hikima ◽  
Masahiro Ohshima ◽  
Takafumi Sekiguchi ◽  
...  

Herein, lightweight nanocomposite foams with expansion ratios ranging from 2–10-fold were fabricated using an isotactic polypropylene (iPP) matrix and cellulose nanofiber (CNF) as the reinforcing agent via core-back foam injection molding (FIM). Both the native and modified CNFs, including the different degrees of substitution (DS) of 0.2 and 0.4, were melt-prepared and used for producing the polypropylene (PP)/CNF composites. Foaming results revealed that the addition of CNF greatly improved the foamability of PP, reaching 2–3 orders of magnitude increases in cell density, in comparison to those of the neat iPP foams. Moreover, tensile test results showed that the incorporation of CNF increased the tensile modulus and yield stress of both solid and 2-fold foamed PP, and a greater reinforcing effect was achieved in composites containing modified CNF. In the compression test, PP/CNF composite foams prepared with a DS of 0.4 exhibited dramatic improvements in mechanical performance for 10-fold foams, in comparison to iPP, with increases in the elastic modulus and collapse stress of PP foams of 486% and 468%, respectively. These results demonstrate that CNF is extraordinarily helpful in enhancing the foamability of PP and reinforcing PP foams, which has importance for the development of lightweight polymer composite foams containing a natural nanofiber.


2016 ◽  
Vol 847 ◽  
pp. 53-59
Author(s):  
Zi Xiang Chen ◽  
Rui Lin He ◽  
Qing Qing Zhao ◽  
Xian Yan Zhou ◽  
Zhong Feng Zhang

The basic mechanical performance of glue laminated timber (GLT) reinforced with glass fiber reinforced plastic (GFRP) for structural materials was studied. The differences of mechanical performance of the GLT reinforced with GFRP and the common GLT were compared by the test, and the quantitative influence of reinforcement ratio and arrangement pattern of GFRP on the mechanical performance was investigated. The test results showed that the static bending strength of GLT increased with the increasing of GFRP reinforcement ratio, and the reasonable arrangement pattern of GFRP could improve the internal bonding strength of GLT. The influence of reinforcement ratio and arrangement pattern of GFRP on the elastic modulus was relatively small. Finally, a mathematical model of static bending strength for GLT reinforced with GFRP was proposed, which can consider the influence of reinforcement ratio and GFRP arrangement pattern


2013 ◽  
Vol 368-370 ◽  
pp. 880-883
Author(s):  
Jing Qiu ◽  
Jian Hong Tong ◽  
Li Hui Chen

The glulam is determined by, and therefore a representation of, a new kind of ecological structural materials. The aim of this study was to summarize the mechanical performance especially the flexural behavior of various kinds of glulam and the physical properties of their relevant original timbers including pseudotsuga menziesii, larch, Yi poplar, poplar, China fir, mongolian scotch pine and camphor. And then it established and analyzed the relationship between the two to contrast those timber species so as to provide engineers with some reference in selecting timber glulam.


2018 ◽  
Vol 5 (5) ◽  
pp. 703-714 ◽  
Author(s):  
Si-Ming Chen ◽  
Huai-Ling Gao ◽  
Yin-Bo Zhu ◽  
Hong-Bin Yao ◽  
Li-Bo Mao ◽  
...  

Abstract Biomimetic designs based on micro/nanoscale manipulation and scalable fabrication are expected to develop new-style strong, tough structural materials. Although the mimicking of nacre-like ‘brick-and-mortar’ structure is well studied, many highly ordered natural architectures comprising 1D micro/nanoscale building blocks still elude imitation owing to the scarcity of efficient manipulation techniques for micro/nanostructural control in practical bulk counterparts. Herein, inspired by natural twisted plywood structures with fascinating damage tolerance, biomimetic bulk materials that closely resemble natural hierarchical structures and toughening mechanisms are successfully fabricated through a programmed and scalable bottom-up assembly strategy. By accurately engineering the arrangement of 1D mineral micro/nanofibers in biopolymer matrix on the multiscale, the resultant composites display optimal mechanical performance, superior to many natural, biomimetic and engineering materials. The design strategy allows for precise micro/nanostructural control at the macroscopic 3D level and can be easily extended to other materials systems, opening up an avenue for many more micro/nanofiber-based biomimetic designs.


Author(s):  
John Jy-An Wang ◽  
Fei Ren ◽  
Wei Zhang ◽  
Zhili Feng ◽  
Lawrence Anovitz ◽  
...  

Reliability of hydrogen pipelines and storage tanks is significantly influenced by the mechanical performance of the structural materials exposed to the hydrogen environment. Fracture behavior and fracture toughness are of specific interest since they are relevant to structural integrity. However, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen. Thus it is desired to develop novel in situ techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, two special testing apparatus were designed to facilitate in situ fracture testing in H2. In addition to a multi-notch tensile fixture, a torsional fixture was developed to utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The design concepts will be discussed. Preliminary in situ testing results indicated that the exposure to H2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using a Gleeble machine, which illustrated the effect of welding on the fracture toughness of this material.


2019 ◽  
Author(s):  
Peter Peter ◽  
Claudia Creighton ◽  
David Fox ◽  
Pablo Mota Santiago ◽  
Adrian Hawley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document