High diffusivity dense films of a nanoporous-crystalline polymer

Polymer ◽  
2021 ◽  
pp. 124005
Author(s):  
Christophe Daniel ◽  
Paola Rizzo ◽  
Baku Nagendra ◽  
Antonietta Cozzolino ◽  
Gaetano Guerra
Author(s):  
Linda C. Sawyer

Recent liquid crystalline polymer (LCP) research has sought to define structure-property relationships of these complex new materials. The two major types of LCPs, thermotropic and lyotropic LCPs, both exhibit effects of process history on the microstructure frozen into the solid state. The high mechanical anisotropy of the molecules favors formation of complex structures. Microscopy has been used to develop an understanding of these microstructures and to describe them in a fundamental structural model. Preparation methods used include microtomy, etching, fracture and sonication for study by optical and electron microscopy techniques, which have been described for polymers. The model accounts for the macrostructures and microstructures observed in highly oriented fibers and films.Rod-like liquid crystalline polymers produce oriented materials because they have extended chain structures in the solid state. These polymers have found application as high modulus fibers and films with unique properties due to the formation of ordered solutions (lyotropic) or melts (thermotropic) which transform easily into highly oriented, extended chain structures in the solid state.


Author(s):  
Wendy Putnam ◽  
Christopher Viney

Liquid crystalline polymers (solutions or melts) can be spun into fibers and films that have a higher axial strength and stiffness than conventionally processed polymers. These superior properties are due to the spontaneous molecular extension and alignment that is characteristic of liquid crystalline phases. Much of the effort in processing conventional polymers goes into extending and aligning the chains, while, in liquid crystalline polymer processing, the primary microstructural rearrangement involves converting local molecular alignment into global molecular alignment. Unfortunately, the global alignment introduced by processing relaxes quickly upon cessation of shear, and the molecular orientation develops a periodic misalignment relative to the shear direction. The axial strength and stiffness are reduced by this relaxation.Clearly there is a need to solidify the liquid crystalline state (i.e. remove heat or solvent) before significant relaxation occurs. Several researchers have observed this relaxation, mainly in solutions of hydroxypropyl cellulose (HPC) because they are lyotropic under ambient conditions.


1995 ◽  
Vol 60 (11) ◽  
pp. 1869-1874 ◽  
Author(s):  
Anatoly E. Nesterov ◽  
Yuri S. Lipatov ◽  
Vitaly V. Horichko

The phase separation in the blends of poly(methyl methacrylate) and liquid-crystalline polymer (copolymer of ethylene terephthalate and p-hydroxybenzoic acid) has been studied by the light scattering method and the cloud point curves have been obtained. Simultaneously some morphological features of the blends have been observed. It was found that the initial blends are in the state of forced compatibility and that thermally induced phase separation occurs by the mechanism of spinodal decomposition but presumably in the non-linear regime.


2017 ◽  
Vol 8 (21) ◽  
pp. 3286-3293 ◽  
Author(s):  
Bin Mu ◽  
Xingtian Hao ◽  
Jian Chen ◽  
Qian Li ◽  
Chunxiu Zhang ◽  
...  

Well-prepared side-chain discotic liquid crystal polymers with shorter spacers in ordered columnar phases are fascinating and promising cost-effective, solution-processable organic semiconducting materials for various potential optoelectronic device applications.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1134
Author(s):  
Bo Seok Song ◽  
Jun Young Lee ◽  
Sun Hwa Jang ◽  
Wan-Gyu Hahm

High-speed melt spinning of thermotropic liquid crystalline polymer (TLCP) resin composed of 4-hydroxybenzoic acid (HBA) and 2-hydroxy-6-napthoic acid (HNA) monomers in a molar ratio of 73/27 was conducted to investigate the characteristic structure development of the fibers under industrial spinning conditions, and the obtained as-spun TLCP fibers were analyzed in detail. The tensile strength and modulus of the fibers increased with shear rate in nozzle hole, draft in spin-line and spinning temperature and exhibited the high values of approximately 1.1 and 63 GPa, respectively, comparable to those of industrial as-spun TLCP fibers, at a shear rate of 70,000 s−1 and a draft of 25. X-ray diffraction demonstrated that the mechanical properties of the fibers increased with the crystalline orientation factor (fc) and the fractions of highly oriented crystalline and non-crystalline anisotropic phases. The results of structure analysis indicated that a characteristic skin–core structure developed at high drafts (i.e., spinning velocity) and low spinning temperatures, which contributed to weakening the mechanical properties of the TLCP fibers. It is supposed that this heterogeneous structure in the cross-section of the fibers was induced by differences in the cooling rates of the skin and core of the fiber in the spin-line.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guangming Dai ◽  
Lihua Zhan ◽  
Chenglong Guan ◽  
Minghui Huang

Abstract In this study, the differential scanning calorimetry (DSC) tests were performed to measure the nonisothermal crystallization behavior of carbon fiber reinforced polyether ether ketone (CF/PEEK) composites under different cooling rates. The characteristic parameters of crystallization were obtained, and the nonisothermal crystallization model was established. The crystallization temperature range of the material at different cooling rates was predicted by the model. The unidirectional laminates were fabricated at different cooling rates in the crystallization temperature range. The results showed that the crystallization temperature range shifted to a lower temperature with the increase of cooling rate, the established nonisothermal crystallization model was consistent with the DSC test results. It is feasible to shorten the cooling control range from the whole process to the crystallization range. The crystallinity and transverse tensile strength declined significantly with the increase of the cooling rate in the crystallization temperature range. The research results provided theoretical support for the selection of cooling conditions and temperature control range, which could be applied to the thermoforming process of semi-crystalline polymer matrixed composites to improve the manufacturing efficiency.


Author(s):  
Lorenzo Maserati ◽  
Sivan Refaely-Abramson ◽  
Christoph Kastl ◽  
Christopher T. Chen ◽  
Nicholas J. Borys ◽  
...  

Hybrid layered metal chalcogenide crystalline polymer hosts strongly anisotropic two-dimensional excitons with large binding energies.


Sign in / Sign up

Export Citation Format

Share Document