Physical blend of PLA/NR with co-continuous phase structure: Preparation, rheology property, mechanical properties and morphology

2014 ◽  
Vol 37 ◽  
pp. 94-101 ◽  
Author(s):  
Chuanhui Xu ◽  
Daosheng Yuan ◽  
Lihua Fu ◽  
Yukun Chen
2013 ◽  
Vol 804 ◽  
pp. 102-105
Author(s):  
Tao Yin ◽  
Yu Qi Gu ◽  
Chun Yu Yu ◽  
Zi Xin Li

Poly (phenylene sulfide) (PPS) was blended with polyamide 66 (PA66) in a wide range of compositions by using a co-rotating twin-screw extruder. Dynamic mechanical analysis was used in determination of the co-continuous phase. The results allowed to precisely detecting the range of co-continuity. In addition, the mechanical properties of PPS/PA66 composites can also be used to identify the dispersed/matrix phase or co-continuous phase structure.


2011 ◽  
Vol 299-300 ◽  
pp. 751-754 ◽  
Author(s):  
Bing Liang ◽  
Jie Mei Ji ◽  
Xiao Dong Hong

A thermoplastic elastomer of EPDM/HPVC with excellent properties was prepared by dynamic vulcanization. The effects of the rubber/plastics ratio, the content of plasticizer and vulcanizing agent on the mechanical properties of EPDM/HPVC were investigated in detail. Results indicate when the mass ratio of EPDM/HPVC was 30/70, CPE was 9 phr, sulfur was 0.4 phr, EPDM/HPVC had an excellent mechanical property and aging resistance. EPDM/HPVC prepared by dynamic vulcanization had a typical sea-island two phase structure in which smaller EPDM particle dispersed uniformly in the continuous phase of HPVC.


2021 ◽  
Author(s):  
Yufeng Lei ◽  
Anqiang Zhang ◽  
Yaling Lin

Blending polymers has always been a critical strategy toward high-performance materials. By creating interpenetrating polymer network (IPN), the incompatibility of different polymers could be overcome and a favorable bi-continuous phase...


2011 ◽  
Vol 19 (9) ◽  
pp. 725-732
Author(s):  
Shigeki Hikasa ◽  
Kazuya Nagata ◽  
Yoshinobu Nakamura

The influences of combined elastomers on impact properties and morphology of polypropylene (PP)/elastomer/CaCO3 ternary composites were investigated. In the case that polystyrene- block-poly(ethylene-butene)- block-polystyrene triblock copolymer (SEBS) and poly(ethylene- co-octene) (EOR) were used as elastomers, a sea-island structure consisting of EOR dispersed phase and SEBS continuous phase was formed. The elastomer and the CaCO3 particles were separately dispersed in PP matrix. In the case that carboxylated SEBS (C-SEBS) and EOR were used, the C-SEBS particles were dispersed in the EOR particles. Almost all of the CaCO3 particles were dispersed in the PP matrix, although some of the CaCO3 particles were dispersed in the C-SEBS/EOR combined particles. Impact strength improved with an increase of incorporated CaCO3 particles. The effect of elastomer on the impact strength was SEBS ≥ SEBS/EOR > EOR = C-SEBS/EOR > C-SEBS. The morphology formed by elastomer and CaCO3 particles strongly affected the impact properties of the ternary composites.


Sign in / Sign up

Export Citation Format

Share Document