scholarly journals Evaluation of the interfacial adhesion between polymer and metal on polymer-metal hybrids

2021 ◽  
pp. 107448
Author(s):  
Achim Frick ◽  
Markus Rettenberger ◽  
Marcel Spadaro
2002 ◽  
Vol 124 (2) ◽  
pp. 127-134 ◽  
Author(s):  
Qizhou Yao ◽  
Jianmin Qu

Debonding of polymer-metal interfaces often involves both interfacial and cohesive failure. Since the cohesive strength of polymers is usually much greater than the polymer-metal interfacial strength, cohesive failure near the interface is usually desired for enhancing the interfacial adhesion. Roughened surfaces generally produce more cohesive failure; therefore, they are used commonly in practice to obtain better adhesion. This paper develops a fracture mechanics model that can be used to quantitatively predict the amount of cohesive failure once the surface roughness data are given. An epoxy/Al interface was investigated using this fracture mechanics model. The predicted amount of cohesive failure as a function of surface roughness compares very well with the experimentally measured values. It is believed that this model can be extended to other polymer–metal interfaces. Contributed by the Electronic and Photonic Packaging Division for publication in the JOURNAL OF ELECTRONIC PACKAGING. Manuscript received by the EPPD.


2000 ◽  
Author(s):  
Qizhou Yao ◽  
Jianmin Qu

Abstract This paper is concerned with the interfacial adhesion and failure of underfill materials in flip-chip packages. Debonding of polymer-metal interfaces often involves both interfacial and cohesive failure. Since the cohesive strength of polymers is usually much greater than the polymer-metal interfacial strength, cohesive failure near the interface is usually desired to enhance the interfacial adhesion. Roughened surfaces generally produce more cohesive failure, therefore, are used commonly in practice to obtain better adhesion. In this paper a fracture mechanics model is developed that can be used to quantitatively predict the amount of cohesive failure once the surface roughness data are given. An epoxy/Al interface was investigated using this fracture mechanics model. The predicted amount of cohesive failure as a function of surface roughness compares very well with the experimentally measured values. It is believed that this model can be extended to other polymer – metal interfaces.


Author(s):  
Gopalan Venkatachalam ◽  
Varun Mathur ◽  
Vimal Anand ◽  
A. Gautham Shankar

2020 ◽  
Vol 33 ◽  
pp. 101135 ◽  
Author(s):  
Sebastian Hertle ◽  
Tobias Kleffel ◽  
Andreas Wörz ◽  
Dietmar Drummer

Author(s):  
Timothy P. Ferguson ◽  
Jianmin Qu

Moisture poses a significant threat to the reliability of microelectronic assemblies and can be attributed as being one of the principal causes of many premature package failures. It is a multi-dimensional concern in electronic packaging, having an adverse effect on package reliability by changing both the mechanical properties and interfacial adhesion of the microelectronic assembly. In this paper, a study has been conducted to evaluate the moisture-induced degradation of both the elastic modulus of a commercially available no-flow underfill and the interfacial adhesion of the underfill to a copper alloy substrate. Three different levels of moisture preconditioning, 85C/50%RH, 85C/65%RH, and 85C/85RH%, were implemented in this study. Diffusion coefficient test specimens were constructed to experimentally measure the moisture diffusivity into the underfill resin and obtain the moisture saturation concentration for each level of moisture preconditioning. Flexural bend test specimens were made to characterize the effect of moisture on the elastic modulus of the underfill adhesive. Last, interfacial fracture toughness specimens with prefabricated interface cracks were used in a four point bending test to quantify the effect of moisture on interfacial fracture toughness. The results of this study will aid in the development of more robust microelectronic assemblies, demonstrating how both the elastic modulus and interfacial toughness change as a function of moisture concentration.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2963
Author(s):  
Erik Saborowski ◽  
Axel Dittes ◽  
Philipp Steinert ◽  
Thomas Lindner ◽  
Ingolf Scharf ◽  
...  

Mechanical interlocking has been proven to be an effective bonding mechanism for dissimilar material groups like polymers and metals. Therefore, this contribution assesses several surface pretreatments for the metallic adherent. Blasting, etching, combined blasting and etching, thermal spraying, and laser structuring processes are investigated with regard to the achievable interlaminar strength and the corresponding surface roughness parameters. The experiments are carried out on EN AW-6082/polyamide 6 polymer-metal-hybrids, utilizing a novel butt-bonded hollow cylinder specimen geometry for determining the shear and tensile strength. The experimental results indicate that the surface roughness slope has a major impact on the interlaminar strength. A laser-generated pin structure is found to provide the best mechanical performance as well as the highest surface slope of all investigated structuring methods.


Sign in / Sign up

Export Citation Format

Share Document