Biochemical changes and antioxidant activity of mango ginger (Curcuma amada Roxb.) rhizomes during postharvest storage at different temperatures

2007 ◽  
Vol 46 (2) ◽  
pp. 189-194 ◽  
Author(s):  
R.S. Policegoudra ◽  
S.M. Aradhya
Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 820
Author(s):  
José M. Lorente-Mento ◽  
Fabián Guillén ◽  
Salvador Castillo ◽  
Domingo Martínez-Romero ◽  
Juan M. Valverde ◽  
...  

The effect of melatonin pomegranate tree treatments on fruit quality and bioactive compounds with antioxidant activity at harvest and during storage at 10 °C for 60 days was assayed in two consecutive years, 2019 and 2020. In the first year, trees were treated with 0.1, 0.3 and 0.5 mM of melatonin along the developmental fruit growth cycle, and results showed that bioactive compounds (total phenolics and total and individual anthocyanins) and antioxidant activity at harvest were higher in fruits from melatonin-treated trees than in controls. Other fruit quality parameters, such as firmness, total soluble solids and aril red colour, were also increased as a consequence of melatonin treatment. In fruit from control tress, firmness and acidity levels decreased during storage, while increases occurred on total soluble solids, leading to fruit quality reductions. These changes were delayed, and even maintenance of total acidity was observed, in fruit from melatonin-treated trees with respect to controls, resulting in a fruit shelf-life increase. Moreover, concentration of phenolics and anthocyanins and antioxidant activity were maintained at higher levels in treated than in control fruits during the whole storage period. In general, all the mentioned effects were found at the highest level with the 0.1 mM melatonin dose, and then it was selected for repeating the experiment in the second year and results of the first year were confirmed. Thus, 0.1 mM melatonin treatment could be a useful tool to enhance aril content on bioactive compounds with antioxidant activity and health beneficial effects and to improve quality traits of pomegranate fruit, at harvest and during postharvest storage.


Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Yanhang Chen ◽  
Musavvara Kh. Shukurova ◽  
Yonathan Asikin ◽  
Miyako Kusano ◽  
Kazuo N. Watanabe

Curcuma amada Roxb. (Zingiberaceae), commonly known as mango ginger because its rhizome and foliar parts have a similar aroma to mango. The rhizome has been widely used in food industries and alternative medicines to treat a variety of internal diseases such as cough, bronchitis, indigestion, colic, loss of appetite, hiccups, and constipation. The composition of the volatile constituents in a fresh rhizome of C. amada is not reported in detail. The present study aimed to screen and characterize the composition of volatile organic compound (VOC) in a fresh rhizome of three C. amada (ZO45, ZO89, and ZO114) and one C. longa (ZO138) accessions originated from Myanmar. The analysis was carried out by means of headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS). As a result, 122 VOCs were tentatively identified from the extracted 373 mass spectra. The following compounds were the ten most highly abundant and broadly present ones: ar-turmerone, α-zingiberene, α-santalene, (E)-γ-atlantone, cuparene, β-bisabolene, teresantalol, β-sesquiphellandrene, trans-α-bergamotene, γ-curcumene. The intensity of ar-turmerone, the sesquiterpene which is mainly characterized in C. longa essential oil (up to 15.5–27.5%), was significantly higher in C. amada accession ZO89 (15.707 ± 5.78a) compared to C. longa accession ZO138 (0.300 ± 0.08b). Cis-α-bergamotene was not detected in two C. amada accessions ZO45 and ZO89. The study revealed between-species variation regarding identified VOCs in the fresh rhizome of C. amada and C. longa.


2013 ◽  
Vol 31 (No. 6) ◽  
pp. 601-606 ◽  
Author(s):  
G. Šarić ◽  
K. Marković ◽  
D. Vukičević ◽  
E. Lež ◽  
M. Hruškar ◽  
...  

We determined how the antioxidant activity and total phenolic content of honey changed after being subjected to a high temperature. Antioxidant activity was determined using two methods – FRAP (ferric reducing antioxidant power) and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays. Total phenolic content was determined by modified Folin-Ciocalteu method. The research was conducted on 31 samples of acacia honey and 8 samples of chestnut honey. All measurements were done at two temperatures – at 23°C (room temperature) and after 5 min of heating at 95°C. The obtained results show uneven changes of antioxidant activity and total phenolic content among individual samples, i.e. in some samples antioxidant activity decreased after heating, while in others it increased. The same applies to the total phenolic content. Statistical analysis of the results (t-test) showed no statistically significant differences between the results measured at two different temperatures (P > 0.05) in all three methods used, and in both types of honey. The only statistically significant difference (P < 0.05) was observed when using DPPH method in acacia honey.


2019 ◽  
Vol 15 (11-12) ◽  
Author(s):  
Kashif Ghafoor ◽  
Isam A. Mohamed Ahmed ◽  
Süleyman Doğu ◽  
Nurhan Uslu ◽  
Gbemisola J. Fadimu ◽  
...  

AbstractThe effect of heating at different temperatures (60, 80, 90, 110, and 130 °C) on the total phenolic content, antioxidant activity, and phenolic compounds present in plum and mahaleb fruits was investigated. The antioxidant activity values and total phenolic contents of fresh plum (93.82% measured by DPPH method, 787.79 mg gallic acid equivalent (GAE)/100 g dry weight determined by Folin method) and mahaleb fruits (81.80%, 634.47 mg GAE/100 g dry weight) were higher than plum and mahaleb fruits dried at different temperatures (p < 0.05). Generally, the heating process caused a reduction in both total phenolic content and antioxidant activity for plum and mahaleb. While (+)-catechin (92.62 mg/kg), 1,2-dihydroxybenzene (132.15 mg/kg), gallic acid (107.01 mg/kg), and 3,4-dihydroxybenzoic acid (74.59 mg/kg) are the key phenolic compounds in fresh plum, (+)-catechin, 3,4-dihydroxybenzoic acid, 1,2-dihydroxybenzene, and syringic and caffeic acids were the major phenolic compounds of mahaleb fruits. The polyphenol content of fruits and the class of phenolics present are significantly affected by heating temperature.


2008 ◽  
Vol 37 (9) ◽  
pp. 1174-1181 ◽  
Author(s):  
Jung-Hye Shin ◽  
Duck-Joo Choi ◽  
Mi-Ja Chung ◽  
Min-Jung Kang ◽  
Nak-Ju Sung

Sign in / Sign up

Export Citation Format

Share Document