Exogenous calcium chloride (CaCl2) promotes γ-aminobutyric acid (GABA) accumulation in fresh-cut pears

2021 ◽  
Vol 174 ◽  
pp. 111446
Author(s):  
Zongyu Chi ◽  
Yuqin Dai ◽  
Shifeng Cao ◽  
Yingying Wei ◽  
Xingfeng Shao ◽  
...  
2021 ◽  
pp. 147-152
Author(s):  
M.S. Chang ◽  
Y.P. Hong ◽  
J.S. Lee ◽  
M.H. Park ◽  
H.J. Yang ◽  
...  

Foods ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 401 ◽  
Author(s):  
Rosanna Tofalo ◽  
Giorgia Perpetuini ◽  
Noemi Battistelli ◽  
Alessia Pepe ◽  
Andrea Ianni ◽  
...  

The influence of calf (R1), kid (R2) and pig (R3) rennets on microbiota, biogenic amines (BAs) and γ-aminobutyric acid (GABA) accumulation in raw milk ewe’s cheeses was evaluated. Cheeses were investigated at different ripening times for their microbial composition, free amino acids (FAAs), BAs and GABA content. Moreover, the expression of tyrosine (tdc) and histidine (hdc) decarboxylases genes was evaluated by quantitative Real Time–Polymerase Chain Reaction (qRT-PCR). Microbial counts showed similar values in all samples. Pig rennet were cheeses were characterized by higher proteolysis and the highest values of BAs. The BAs detected were putrescine, cadaverine and tyramine, while histamine was absent. qRT-PCR confirmed this data, in fact hdc gene was not upregulated, while tdc gene expression increased over time in agreement with the increasing content of tyramine and the highest fold changes were detected in R3 cheeses. GABA showed the highest concentration in R2 cheeses reaching a value of 672 mg/kg. These results showed that the accumulation of BAs and GABA in Pecorino di Farindola is influenced by ripening time and type of coagulant. Further studies are required to develop starter cultures to reduce BAs content and improve health characteristics of raw milk ewe’s cheeses.


2017 ◽  
Vol 53 (3) ◽  
pp. 819-827 ◽  
Author(s):  
Cristina Patanè ◽  
Angelo Malvuccio ◽  
Alessandro Saita ◽  
Paola Rizzarelli ◽  
Marco Rapisarda ◽  
...  

2013 ◽  
Vol 5 (3) ◽  
pp. 1108-1115 ◽  
Author(s):  
Wan-Chung Liao ◽  
Chung-Yi Wang ◽  
Yuan-Tay Shyu ◽  
Roch-Chui Yu ◽  
Kuo-Chieh Ho

2021 ◽  
Vol 2 (3) ◽  
pp. 677-690
Author(s):  
Jeovan A. Araujo ◽  
Yvonne J. Cortese ◽  
Marija Mojicevic ◽  
Margaret Brennan Fournet ◽  
Yuanyuan Chen

Calcium chloride (CaCl2) has been widely used to maintain the quality of fresh-cut fruits and vegetables because it stabilizes and strengthens the membrane system against fungal attacks. It is mainly applied via spray coating and dip coating techniques. This study explored a method of incorporating calcium chloride extracted from eggshells in a packaging material, thermoplastic starch (TPS), via a hot-melt extrusion process. The composites were characterized by FTIR, DSC, SEM-EDX and tensile testing. FTIR confirmed the chemical reactions between CaCl2 and TPS. DSC results showed a significant decrease in the heat of fusion by adding 20 wt% of CaCl2 content in TPS, indicating a drop in the degree of crystallinity. The Young’s modulus of TPS was not significantly affected by the incorporation of 10 wt% CaCl2 (P = 0.968), but reduced notably with the addition of 20 wt% CaCl2 (P = 0.05), indicating the plasticizer effect of the CaCl2. Physiochemical analysis of fresh-cut apple slices was assessed. Samples placed on the surface of the TPS/CaCl2 composites displayed less pH reduction, reduced antioxidant activity, more weight loss and increased reducing sugar compared to the samples placed on the surface of virgin TPS films. CaCl2 released from the TPS/CaCl2 films was measured and their antimicrobial activity was confirmed by bacterial inhibitory growth assessment. Fungal growth was observed on apple slices placed on virgin TPS film by day 21 while apple slices placed on TPS/CaCl2 20 wt% composites did not support any fungal growth for 28 days. In summary, TPS and eggshell-extracted CaCl2 showed the ability to maintain the quality of fresh-cut apples, and TPS/CaCl2 10 wt% composite could be a good option as a packaging material for fresh-cut fruits due to active antimicrobial activity and maintained Young’s modulus.


Sign in / Sign up

Export Citation Format

Share Document