Pressure loss and friction factor in non-Newtonian mine paste backfill: Modelling, loop test and mine field data

2019 ◽  
Vol 344 ◽  
pp. 443-453 ◽  
Author(s):  
Bhargav Bharathan ◽  
Maureen McGuinness ◽  
Sharun Kuhar ◽  
Mehrdad Kermani ◽  
Ferri P. Hassani ◽  
...  
Author(s):  
W. D. Allan ◽  
S. A. Andrews ◽  
M. LaViolette

A six row pin-fin array was constructed with a spanwise spacing of 2.5 diameters, streamwise spacing of 1.5 diameters and a height to diameter ratio of 1. The streamwise stagger of alternate rows was continuously varied from fully in-line to fully staggered. Tests were carried out at Reynolds numbers of 2.7 × 104 and 2.3 × 104, corresponding to maximum velocities, in the low subsonic range, of 21 m/s and 18 m/s respectively. These results showed that the array averaged heat transfer was greatest from a fully staggered array and had a minimum at a stagger slightly greater than fully in-line. However, with increasing stagger, the array-averaged friction factor grew at a greater rate than the heat transfer. The ensuing analysis of the total array performance, considering both the magnitude of heat transfer and the losses within the array, showed that the fully in-line array had the highest ratio of heat transfer enhancement to friction factor enhancement. Therefore, if pressure loss was a design criterion, the fully in-line array was preferable. However, if pressure loss was not a constraint, then the staggered array was preferable.


Author(s):  
Stephen A. Andrews ◽  
William D. E. Allan

An experiment was conducted on the effects of streamwise stagger on heat transfer and pressure drop in a pin-fin array. The data were analyzed so as to highlight how stagger could be used to design a pin fin array for the lowest possible pressure loss. Design of arrays for low pressure loss is important in electronics cooling applications. They require large amounts of heat to be extracted from fixed areas, using a minimum of power to do so. This analysis found that the minimum friction factor occurred at a streamwise stagger of approximately 12% of the range between fully inline and fully staggered. By fixing the pin diameter, varying the stagger resulted in a 63% reduction in friction factor with only a 18% reduction in the Nusselt number, based on the array footprint. Additionally, it was found that for a fixed Nusselt number, the pin diameter could vary within a finite range, with decreasing diameters permitting arrays with more efficient degrees of stagger which continued to carry the required heating/cooling load.


Author(s):  
Kai-Shing Yang ◽  
Ing-Young Chen ◽  
Bor-Yuan Shew ◽  
Chi-Chuan Wang

In this study, an analysis of the performance of micro nozzle/diffusers is performed and fabrication of the micro nozzle/diffuser is conducted and tested. It is found that the pressure loss coefficient for the nozzle/diffuser decreases with the Reynolds number. At a given Reynolds number, the pressure loss coefficient for nozzle is higher than that of the diffuser due to considerable difference in the momentum change. For the effect of nozzle/diffuser length on the pressure loss coefficient, it is found that the influence is rather small. At a fixed volumetric flowrate, a “minimum” phenomenon of the pressure loss coefficient vs. nozzle/diffuser depth is encountered. This is related to the interactions of velocity change and friction factor. Good agreements of the measured data with the predicted results are found in this study except at a diffuser having an opening angle of 20° . It is likely that the departure of this case to the prediction is due to the separation phenomenon in a larger angle of the diffuser.


2014 ◽  
Vol 686 ◽  
pp. 268-271
Author(s):  
Li Luo

Under the current situation, China's rapid economic development, various new science, emerge in an endless stream of new technology, under the environment of coal mine industry, seize the opportunity, by virtue of its original advantages, coupled with technology introduction and innovation consciousness of the play, ushered in a new period of development, into the modern coal mining era. CAN bus technology is a new technology which has the typical data transmission in coal mining, the introduction of a certain degree of CAN bus technology, not only improve the efficiency of data transmission, at the same time, in terms of reliability and greatly enhance. In this paper, to a certain extent on the introduction of the CAN bus technology, and on this basis, based on the CAN bus in the coal mine field data transmission reliability research and analysis


2020 ◽  
Vol 26 (2) ◽  
pp. 57-69
Author(s):  
Hassan Abdul Ameer ◽  
Hassan Abdul Hadi

    In this work, calculation of pressure losses in circulating system for two drilling muds is evaluated in Noor oil field. Two types of drilling muds that were used for drilling section 12 1/4" and 8 3/4" which are Salt saturated mud and Ferro Chrome Lignosulfonate-Chrome Lignite mud. These calculations are based on field data that were gathered from the drilling site of well Noor-15, which are included, rheological data, flow data and specification of drill string. Based on the obtained results, the best rheological model that fit their data is the Herschel-Bulkley model according to correlation coefficient value for their two drilling mud. Also, the difference between the calculated pressure loss by Herschel-Bulkley model and standpipe pressure value are very convergence.


1987 ◽  
Vol 109 (4) ◽  
pp. 200-205 ◽  
Author(s):  
T. B. Jensen ◽  
M. P. Sharma

Published annular pressure drop field data have been compared with values predicted by the Bingham plastic and power law models. Several different equivalent diameter equations and friction factor correlations were utilized to estimate the frictional pressure gradients. The estimated frictional pressure drop gradients were then compared with the experimental gradients statistically to determine which combination of friction factor correlation and equivalent diameter equation predicted the experimental data best. Finally, new correlations for friction factors were developed. These new correlations predict the field data better than previously published correlations.


2021 ◽  
Author(s):  
Trevor M. Cory ◽  
Ryan D. Edelson ◽  
Karen A. Thole ◽  
Tyler Vincent ◽  
San Quach ◽  
...  

Abstract Ceramic matrix composites (CMCs) are of interest for hot section components of gas turbine engines due to their low weight and favorable thermal properties. To implement this advanced composite in a gas turbine engine, characterizing the influence of CMC’s surface topology on heat transfer and cooling performance is critical. However, very few published studies have reported the flow and heat transfer effects caused by this unique surface topology. This study is an experimental and computational investigation to evaluate the effect of weave orientations, relevant to CMC surfaces, on the resulting pressure loss and convective heat transfer within an internal channel. The weave pattern was additively manufactured as the walls of a scaled-up coupon containing a single channel. For each of the three weave orientations, bulk pressure losses and convective heat transfer coefficients were measured over a range of Reynolds numbers. Scaling the pressure losses in terms of a friction factor and convective heat transfer coefficients in terms of a Nusselt number showed the importance of choosing the appropriate definition of the hydraulic diameter, which was particularly important for the friction factor. A coupon having one wall with the weave surface increased pressure loss and heat transfer compared to a smooth wall with the largest increases occurring when the CMC weave strands were perpendicular to the flow. Friction factor augmentations were much higher than heat transfer augmentations. When adding the weave to a second channel wall, pressure loss and heat transfer were further increased. Orienting the CMC strands perpendicular to the flow consistently showed the largest augmentations in heat transfer over a smooth channel, but at a much higher pressure loss penalty than that seen with the CMC strands parallel to the flow.


2019 ◽  
Vol 30 (7) ◽  
pp. 3755-3763
Author(s):  
Mehmet Sorgun ◽  
Erman Ulker

Purpose The purpose of this paper is to present a new friction factor equation for practical use, including fluid temperature, pipe diameter ratio and inner pipe rotation effects. Design/methodology/approach A friction factor relationship is developed by applying Buckingham’s Theorem of dimensional analysis. Then, the formula is calibrated using experimental data conducted at Izmir Katip Celebi University flow loop. Moreover, the effects of fluid temperature, inner pipe rotation and pipe diameter ratio on friction factor are investigated experimentally. Findings Satisfactory agreements are obtained between proposed formula and experiments. The experimental results indicate that major variable parameters affecting friction factor is Reynolds number. Pipe rotation has negligible effect on friction factor at high Reynolds number. Prandtl number is one of the important parameters affecting the friction factor. Moreover, as the pipe diameter ratio is decreased, friction factor increases. Originality/value Determining fluid behavior of fluids under high temperature is especially important for deep wells during drilling. Temperature drastically changes fluid properties and flow characteristics in wells. These changes have a remarkable effect on pressure losses. However, since the temperature is considered constant in the calculation of the pressure loss, problems can be encountered in most systems. Friction factor is one of the important parameters for determining pressure loss in closed conduits. The originality of this work is to propose a new friction factor equation for practical use, including fluid temperature, pipe diameter ratio and inner pipe rotation effects.


2020 ◽  
Vol 47 (11) ◽  
pp. 1238-1248
Author(s):  
Saeid Okhravi ◽  
Saeed Gohari

Resistance to flow because of the presence of bed forms over armored riverbeds is of paramount importance, leading to the effective design of water-resources-related projects. Based on the findings over bed armored surfaces, it is shown that the controlling roughness (ks) can be taken as equal to the median diameter of the armor layer. Analytical methodologies for total and grain friction factors have been proposed here that take flow non-uniformity into account using the velocity distribution and friction slope. The percentage composition of form friction factor in the total friction factor was estimated to be 40%. The results were explained in light of the coupling of the sediment threshold problem with the friction factor and coarse-grain rearrangement in armor layer. The computed form friction factor by proposed method was compared with Keulegan’s method and is found to give satisfactory results, showing 80% agreement of all field data sets.


Sign in / Sign up

Export Citation Format

Share Document