Effects of inlet concentration on the hydrocyclone separation performance with different inlet velocity

2020 ◽  
Vol 375 ◽  
pp. 337-351
Author(s):  
Feng Li ◽  
Peikun Liu ◽  
Xinghua Yang ◽  
Yuekan Zhang ◽  
Yaqin Zhao
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jin Jiang ◽  
Rui Ying ◽  
Jingan Feng ◽  
Weibing Wang

Compound hydrocyclone is a kind of dynamic hydrocyclone also with the advantages of static hydrocyclone. In this investigation, the effect of operating parameters on separation performance of compound hydrocyclone is studied using both CFD technique and experimental method. The flow field of compound hydrocyclone was simulated by the RSM turbulence model; the particles with different size were simplified to 6 phases and simulated by the mixture multiphase model. The central composite design method was used to conduct the separation experiment of compound hydrocyclone. The results indicated that compound hydrocyclone can be used for finer particles separation and the flow field of compound hydrocyclone can still achieve a higher centrifugal force in lower inlet velocity. When the minimum partition size is required, the optimized operating condition of the compound hydrocyclone is v = 2.5 m/s, n = 1865 rpm, and c = 7.5%, while when the maximum partition size is required, the optimized operating condition is v = 2.5 m/s, n = 905 rpm, and c = 24.5%.


2013 ◽  
Vol 448-453 ◽  
pp. 3378-3381
Author(s):  
Jian Jun Meng ◽  
Yi Luo ◽  
Gang Yan ◽  
Jian Mei Feng

A three-dimensional steady-state numerical model of oil-gas separator with inlet-collision structure used in small-sized Variable Refrigerant Flow (VRF) system was established. RNG k-ε model was used in gas field and DRW model was chosen for oil droplets tracking. The influence of inlet-collision on velocity distribution, separation efficiency and pressure loss were studied. The results showed that the inlet-collision structure which had smaller radio of inner pipe length to cyclone bodys height could achieve the same separation efficiency as the no inlet-collision structure with bigger cyclone diameter. Higher separation performance could be obtained when the inlet-collision proportion was less than 26.57% and inlet velocity was about 24 m·s-1.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yongxue Zhang ◽  
Chan Guo ◽  
Hucan Hou ◽  
Guomin Xue

The industrial removal process of the light hydrocarbon and water from wet natural gas can be simulated in laboratory with the independently designed helically coiled tube gas-liquid separator. Experiment and numerical simulation are combined to analyze the influences of various inlet velocities and gas void fractions on the gas-liquid separation efficiency and pressure-drop between the inlet and outlet of the helically coiled tube. The results show that, at the inlet velocity of 4 m/s to 18 m/s and the gas void fraction of 88% to 97% for the gas-liquid mixture, the gas-liquid separation efficiency increases at the beginning and then decreases with increasing inlet velocity. Afterwards there is another increasing trend again. The gradient of pressure-drop increases slowly and then fast with the increasing inlet velocity. On the other hand, the gas-liquid separation efficiency first increases with the gas void fraction and then shows a decreasing trend while the pressure-drop keeps falling down with the gas void fraction increasing. Above all the optimal operating parameters of the helically coiled tube separator are inlet velocity of 13 m/s and gas void fraction of 93%, and the separation efficiency and pressure-drop are 95.2% and 0.3 MPa, respectively.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 209 ◽  
Author(s):  
Lanyue Jiang ◽  
Peikun Liu ◽  
Yuekan Zhang ◽  
Xinghua Yang ◽  
Hui Wang

The “entrainment of coarse particles in overflow” and the “entrainment of fine particlesin underflow” are two inevitable phenomena in the hydrocyclone separation process, which canresult in a wide product size distribution that does not meet the requirement of a preciseclassification. Hence, this study proposed a two-stage (TS) hydrocyclone, and the effects of the inletvelocity on the TS hydrocyclone were investigated using computational fluid dynamics (CFD).More specifically, the influences of the first-stage inlet velocity on the second-stage swirling flowfield and the separation performance were studied. In addition, the particle size distribution of theproduct was analyzed. It was found that the first-stage overflow contained few coarse particlesabove 40 μm and that the second-stage underflow contained few fine particles. The second-stageunderflow was free of particles smaller than 10 μm and almost free of particles smaller than 20 μm.The underflow product contained few fine particles. Moreover, the median particle size of thesecond-stage overflow product was similar to that of the feed. Inspired by this observation, wepropose to recycle the second-stage overflow to the feed for re-classification and to use only thefirst-stage overflow and the second-stage underflow as products. In this way, fine particle productsfree of coarse particle entrainment, and coarse particle products free of fine particle entrainmentcan be obtained, achieving the goal of precise classification.


Author(s):  
Yanqin Mao ◽  
Wenhao Pu ◽  
Liang Cai ◽  
Chaojie Li ◽  
Xiaoyue Wang ◽  
...  

Abstract The axial cyclone separator has simple structure, operates to reducing dust concentration in grain storehouses, and features low production cost, and convenient installation. Aiming to obtain the separation characteristics of an axial flow guide separator, the particle wall collision and the performance of multi-tubes were simulated with Fluent. The renormalization group (RNG) k − ε model was used to study the turbulent modeling and the user define function (UDF) was used to calculate the particle-wall collision. The simulation and experimental results were compared to verify the computation model. The results showed that the basic feature of the flow pattern remains stable and the separation efficiency of 800 kg/m3 particles is higher than 2650 kg/m3 particles when the inlet velocity increases from 2 to 5 m/s. When the inlet velocity was 5 m/s, the normal velocity restitution ratio had a significant effect on the efficiency, the separation efficiency of 167 μm particles changed from 76.74 to 97.93% and a smaller normal velocity restitution ratio had a higher the efficiency. In comparison, the efficiency remained unchanged when changing the tangential velocity restitution ratio. Furthermore, the effects of three target wall materials on the separation efficiency were investigated. And the simulated efficiency the of 296 μm particle of 2024 aluminum, 410 stainless steel and Ga1–4V titanium were 82.15, 79.52 and 77.53% respectively. Besides, effects of tube diameter on performances of cyclone separator were discussed and high intense collisions between particles and walls may occur in a small diameter of cyclone tube, causing deteriorated separation performance. Moreover, with the addition of the dust chamber, the efficiency of cyclone used in combination is slightly improved since the vortex in the exhaust pipe has been finely changed.


2005 ◽  
Vol 36 (4) ◽  
pp. 311-318 ◽  
Author(s):  
R. Bunker ◽  
M. YA. Belen'kii ◽  
M. A. Gotovskii ◽  
B. S. Fokin ◽  
S. A. Isaev

1999 ◽  
Vol 39 (9) ◽  
pp. 161-168 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul ◽  
Andrew Drinkwater ◽  
Ian Clifforde

The use of computational fluid dynamics-based techniques for predicting the gross solids and finely suspended solids separation performance of structures within urban drainage systems is becoming well established. This paper compares the result of simulated flow patterns and gross solids separation predictions with field measurements made in a full size storage chamber. The gross solids retention efficiency was measured for six different storage chambers in the field and simulations of these chambers were undertaken using the Fluent computational fluid dynamics software. Differences between the observed and simulated flow patterns are discussed. The simulated flow fields were used to estimate chamber efficiency using particle tracking. Efficiency results are presented as efficiency cusps, with efficiency plotted as a function of settling velocity. The cusp represents a range of efficiency values, and approaches to the estimation of an overall efficiency value from these cusps are briefly discussed. Estimates of total efficiency based on the observed settling velocity distribution differed from the measured values by an average of ±17%. However, estimates of steady flow efficiency were consistently higher than the observed values. The simulated efficiencies agreed with the field observations in identifying the most efficient configuration.


Author(s):  
Robert J. Boyle ◽  
Louis M. Russell

Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane passage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Results were obtained for Reynolds numbers based on inlet velocity and axial chord between 73,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.


Sign in / Sign up

Export Citation Format

Share Document