Impact of wet-mix total solids content and heat treatment on physicochemical and techno-functional properties of infant milk formula powders

Author(s):  
Mariana Rodríguez-Arzuaga ◽  
Denise Felix da Silva ◽  
Epameinondas Xanthakis ◽  
Kataneh Aalaei ◽  
Tomasz Pawel Czaja ◽  
...  
2017 ◽  
pp. 91-94
Author(s):  
T.M. Klymenko ◽  
◽  
O.A. Serdtseva ◽  
O.S. Karatai ◽  
O.P. Melnychuk ◽  
...  

2010 ◽  
Vol 25 (2) ◽  
pp. 185-194
Author(s):  
Anna Svedberg ◽  
Tom Lindström

Abstract A pilot-scale fourdrinier former has been developed for the purpose of investigating the relationship between retention and paper formation (features, retention aids, dosage points, etc.). The main objective of this publication was to present the R-F (Retention and formation)-machine and demonstrate some of its fields of applications. For a fine paper stock (90% hardwood and 10% softwood) with addition of 25% filler (based on total solids content), the relationship between retention and formation was investigated for a microparticulate retention aid (cationic polyacrylamide together with anionic montmorillonite clay). The retention-formation relationship of the retention aid system was investigated after choosing standardized machine operating conditions (e.g. the jet-to-wire speed ratio). As expected, the formation was impaired when the retention was increased. Since good reproducibility was attained, the R-F (Retention and formation)-machine was found to be a useful tool for studying the relationship between retention and paper formation.


2020 ◽  
Vol 17 (1) ◽  
pp. 27-36
Author(s):  
Xingxing Xiong ◽  
Shengyu Zhang ◽  
Nan Fu ◽  
Hong Lei ◽  
Winston Duo Wu ◽  
...  

Abstract Fish oil was encapsulated with whey protein isolate (WPI) as wall material using a Micro-Fluidic Jet Spray Dryer. The effects of core/wall material ratio, drying temperature and total solids content on the properties of microcapsules were studied. Low core/wall material ratios at 1:5 and 1:3 resulted in high encapsulation efficiency (EE) and excellent oxidative stability of microparticles during storage. Reducing the inlet temperature from 160 to 110 °C remarkably decreased EE from around 99 to 64.8%, associated with substantial increases in peroxide value during storage. The total solids content mainly altered the morphology of microcapsules, showing little influence on EE and oxidative stability. We proposed that the different drying conditions impacted on particle formation behavior during spray drying, which could be a crucial factor responsible for the differences in the quality attributes of microparticles. A low core/wall material ratio and high drying temperature facilitated the formation of a rigid protein skin at droplet surface during drying, whereas a high solids fraction in the droplets could limit possible droplet shrinkage. These factors contributed positively to the encapsulation of the lipophilic core material.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 706
Author(s):  
Edurne Gonzalez ◽  
Aitor Barquero ◽  
Belén Muñoz-Sanchez ◽  
María Paulis ◽  
Jose Ramon Leiza

Green electrospinning is a relatively new promising technology in which a polymer (latex) can be spun from an aqueous dispersion with the help of a template polymer. This method is a green, clean and safe technology that is able to spin hydrophobic polymers using water as an electrospinning medium. In this article, a systematic study that investigates the influence of the template polymer molar mass, the total solids content of the initial dispersion and the particle/template ratio is presented. Furthermore, the influence of the surfactant used to stabilize the polymer particles, the surface functionality of the polymer particles and the use of a bimodal particle size distribution on the final fiber morphology is studied for the first time. In green electrospinning, the viscosity of the initial complex blend depends on the amount and molar mass of the template polymer but also on the total solids content of the dispersion to be spun. Thus, both parameters must be carefully taken into account in order to fine-tune the final fiber morphology. Additionally, the particle packing and the surface chemistry of the polymer particles also play an important role in the obtained nanofibers quality.


1967 ◽  
Vol 50 (3) ◽  
pp. 690-700
Author(s):  
Frank C Lamb

Abstract Total solids by drying, refractive index, and specific gravity were determined on about 375 commercial samples of tomato juice, puree, and paste. Refractive index was determined with and without dilution of tomato paste; pectic enzymes were used to aid filtration and centrifugation. A new specific gravity bottle was used. The new AOAC method for total solids was compared with the former AOAC method on 115 samples. Variations from previous tables relating refractive index and total solids were of little significance up to 20% solids but were increasingly greater as solids increased above 20%. Data obtained in these studies showed lower values for total solids than the old tables in most instances. Separate regression equations had to be calculated for the solids content of the diluted and undiluted samples. Total solids by the official AOAC method was the most precise of the methods used. However, specific gravity and refractive index were both found to have satisfactory degrees of precision


2015 ◽  
Vol 72 (3) ◽  
pp. 406-414
Author(s):  
Yubin Zeng ◽  
Ziyang Zeng ◽  
Junlin Wang

The morphology and surface characteristics of manganese dioxide (MnO2) formed in situ, which was prepared through the oxidation of MnSO4 using KMnO4, were studied. The effects of factors including the form of MnO2, dosage, pH, dosing sequence of in situ MnO2 on the enhanced coagulation were systematically evaluated. The results of analysis by the UV254 and permanganate index CODMn methods indicated that humic acid removal increased from 9.2 and 2.5% to 55.0 and 38.9%, when 10 mg/L of the in situ MnO2 was added in the presence of 2 mg/L of polyaluminum sulfate. The studies of orthogonal experiment revealed that coagulation was most affected by the pH, whereas the dosage of in situ MnO2 and slow stirring duration exhibited a weaker effect. At a pH value of 4.0, in situ MnO2 dosage of 10 mg/L, slow stir over 40 min, and the total solids content was 20 mg/L, the humic acid removal by UV254 and CODMn methods reached 71.2 and 61.2%. These results indicated that the presence of in situ MnO2 enhanced the coagulation and removal of humic acid from water.


Sign in / Sign up

Export Citation Format

Share Document