Enhanced fungal delignification and enzymatic digestibility of poplar wood by combined CuSO4 and MnSO4 supplementation

Author(s):  
Nikolett Wittner ◽  
Waut Broos ◽  
Jordy Bauwelinck ◽  
János Slezsák ◽  
Siegfried E. Vlaeminck ◽  
...  
2020 ◽  
Vol 302 ◽  
pp. 122795 ◽  
Author(s):  
Liping Tan ◽  
Zhongyang Liu ◽  
Tongtong Zhang ◽  
Zhaojiang Wang ◽  
Tongjun Liu

2021 ◽  
Vol 1885 (2) ◽  
pp. 022053
Author(s):  
Chaolu Yin ◽  
Xiang Zhang ◽  
Pingli Li ◽  
Fuxin Fu
Keyword(s):  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1885
Author(s):  
Xinyu Wu ◽  
Feng Yang ◽  
Jian Gan ◽  
Zhangqian Kong ◽  
Yan Wu

The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 487
Author(s):  
Dimitrios Ilanidis ◽  
Stefan Stagge ◽  
Leif J. Jönsson ◽  
Carlos Martín

Biochemical conversion of wheat straw was investigated using hydrothermal pretreatment, enzymatic saccharification, and microbial fermentation. Pretreatment conditions that were compared included autocatalyzed hydrothermal pretreatment at 160, 175, 190, and 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment at 160 and 190 °C. The effects of using different pretreatment conditions were investigated with regard to (i) chemical composition and enzymatic digestibility of pretreated solids, (ii) carbohydrate composition of pretreatment liquids, (iii) inhibitory byproducts in pretreatment liquids, (iv) furfural in condensates, and (v) fermentability using yeast. The methods used included two-step analytical acid hydrolysis combined with high-performance anion-exchange chromatography (HPAEC), HPLC, ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole-mass spectrometry (UHPLC-ESI-QqQ-MS), and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Lignin recoveries in the range of 108–119% for autocatalyzed hydrothermal pretreatment at 205 °C and sulfuric-acid-catalyzed hydrothermal pretreatment were attributed to pseudolignin formation. Xylose concentration in the pretreatment liquid increased with temperature up to 190 °C and then decreased. Enzymatic digestibility was correlated with the removal of hemicelluloses, which was almost quantitative for the autocatalyzed hydrothermal pretreatment at 205 °C. Except for the pretreatment liquid from the autocatalyzed hydrothermal pretreatment at 205 °C, the inhibitory effects on Saccharomyces cerevisiae yeast were low. The highest combined yield of glucose and xylose was achieved for autocatalyzed hydrothermal pretreatment at 190 °C and the subsequent enzymatic saccharification that resulted in approximately 480 kg/ton (dry weight) raw wheat straw.


2021 ◽  
Vol 291 ◽  
pp. 123395
Author(s):  
Xianju Wang ◽  
Dengyun Tu ◽  
Chuanfu Chen ◽  
Qiaofang Zhou ◽  
Huixian Huang ◽  
...  

2020 ◽  
Vol 152 ◽  
pp. 112506 ◽  
Author(s):  
Mohammad Saber Bay ◽  
Keikhosro Karimi ◽  
Mohsen Nasr Esfahany ◽  
Rajeev Kumar

Sign in / Sign up

Export Citation Format

Share Document