scholarly journals Research on Human-computer Interaction Technology of Wearable Devices Such as Augmented Reality Supporting Grid Work

2017 ◽  
Vol 107 ◽  
pp. 170-175 ◽  
Author(s):  
Zhimin He ◽  
Tao Chang ◽  
Siyu Lu ◽  
Hong Ai ◽  
Dong Wang ◽  
...  
Author(s):  
Carl Smith

The contribution of this research is to argue that truly creative patterns for interaction within cultural heritage contexts must create situations and concepts that could not have been realised without the intervention of those interaction patterns. New forms of human-computer interaction and therefore new tools for navigation must be designed that unite the strengths, features, and possibilities of both the physical and the virtual space. The human-computer interaction techniques and mixed reality methodologies formulated during this research are intended to enhance spatial cognition while implicitly improving pattern recognition. This research reports on the current state of location-based technology including Mobile Augmented Reality (MAR) and GPS. The focus is on its application for use within cultural heritage as an educational and outreach tool. The key questions and areas to be investigated include: What are the requirements for effective digital intervention within the cultural heritage sector? What are the affordances of mixed and augmented reality? What mobile technology is currently being utilised to explore cultural heritage? What are the key projects? Finally, through a series of case studies designed and implemented by the author, some broad design guidelines are outlined. The chapter concludes with an overview of the main issues to consider when (re)engineering cultural heritage contexts.


Author(s):  
Zeenat S. AlKassim ◽  
Nader Mohamed

In this chapter, the authors discuss a unique technology known as the Sixth Sense Technology, highlighting the future opportunities of such technology in integrating the digital world with the real world. Challenges in implementing such technologies are also discussed along with a review of the different possible implementation approaches. This review is performed by exploring the different inventions in areas similar to the Sixth Sense Technology, namely augmented reality (AR), computer vision, image processing, gesture recognition, and artificial intelligence and then categorizing and comparing between them. Lastly, recommendations are discussed for improving such a unique technology that has the potential to create a new trend in human-computer interaction (HCI) in the coming years.


2019 ◽  
Vol 1 (12) ◽  
Author(s):  
Kai-Shuan Shen

AbstractThis study presents the issues why gamers prefer mobility-augmented reality games to other types of game and what specific characteristics cause them to invest a large amount of their time on tireless game-play. Furthermore, the appeal of mobility-augmented reality games was studied to solve the above mentioned issues. Then, how human–computer interaction based on mobility-augmented reality games was promoted to create a new marketing mode was explored. Then, Pokémon GO, as the worldwide major mobility-augmented reality game, was selected as the research target in this study. The researcher interviewed 9 experts, collected 235 Knasei words from 33 articles, and surveyed 335 gamers through a questionnaire to collect the data about users’ preferences. A preference-based study was believed to disclose the motivated reasons for the appeal of mobility-augmented reality games. The researcher analyzed the gathered Kansei concepts and questionnaires using the two-stage procedures, including evaluation grid method (EGM) and Quantification Theory Type I. During the first stage the hierarchy of the relationship among the types of appeal factors, the reasons for users’ preferences, and the explicit design characteristics of Pokémon GO present the semantic structure of appeal and were determined using EGM through the accumulation of the review of articles and the interviews of experts. During the second stage the strongest two original evaluation items of Pokémon GO are determined as “social interaction” and “scenario interaction” based on the statistical analysis of Quantification Theory Type I, and their corresponding “upper-level” and “lower-level” considerations are proved to have influence on them. Finally, the paper found that the popularity of Pokémon GO can be ascribed to the design of the innovative models of game interaction, which targets the psychological preferences of gamers. This means that the interaction model between a customer and an enterprise can be developed outside the box and a new type of marketing can be formed. The study proved that the innovative models of interaction successfully drove gamers’ motivations to play Pokémon GO. Designers and researchers of mobility-augmented reality games can absorb important information through this study. This study enriches the field of mobile communication, online marketing, and human–computer interaction in cyberspace.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2258 ◽  
Author(s):  
Zhan Zhang ◽  
Yufei Song ◽  
Liqing Cui ◽  
Xiaoqian Liu ◽  
Tingshao Zhu

Background:Recently, emotion recognition has become a hot topic in human-computer interaction. If computers could understand human emotions, they could interact better with their users. This paper proposes a novel method to recognize human emotions (neutral, happy, and angry) using a smart bracelet with built-in accelerometer.Methods:In this study, a total of 123 participants were instructed to wear a customized smart bracelet with built-in accelerometer that can track and record their movements. Firstly, participants walked two minutes as normal, which served as walking behaviors in a neutral emotion condition. Participants then watched emotional film clips to elicit emotions (happy and angry). The time interval between watching two clips was more than four hours. After watching film clips, they walked for one minute, which served as walking behaviors in a happy or angry emotion condition. We collected raw data from the bracelet and extracted a few features from raw data. Based on these features, we built classification models for classifying three types of emotions (neutral, happy, and angry).Results and Discussion:For two-category classification, the classification accuracy can reach 91.3% (neutral vs. angry), 88.5% (neutral vs. happy), and 88.5% (happy vs. angry), respectively; while, for the differentiation among three types of emotions (neutral, happy, and angry), the accuracy can reach 81.2%.Conclusions:Using wearable devices, we found it is possible to recognize human emotions (neutral, happy, and angry) with fair accuracy. Results of this study may be useful to improve the performance of human-computer interaction.


2017 ◽  
Vol 1 (2) ◽  
pp. 18-41
Author(s):  
Zeenat AlKassim ◽  
Nader Mohamed

This paper discusses recent and unique inventions in Human Computer Interaction (HCI). To that end, firstly the authors discuss the Sixth Sense Technology. This technology allows users to interact with virtual objects in the real world in a unique manner. It has a number of applications which are further discussed. Then the opportunities and challenges are discussed. Most importantly, a list of inventions in fields of Augmented Reality (AR) and Virtual Reality (VR) in the recent years are discussed, grouped and compared. These include the smart eye glasses, VR headsets, smart watches, and more. Future implications of all those technologies are brought into light considering the new advancements in software and hardware designs. Recommendations are highlighted for future inventions.


2021 ◽  
Vol 33 (3) ◽  
pp. 321-332
Author(s):  
Qingshu Yuan ◽  
Ruonan Wang ◽  
Zhigeng Pan ◽  
Shuchang Xu ◽  
Jiali Gao ◽  
...  

2020 ◽  
Vol 8 (6) ◽  
pp. 4667-4673

Virtual Reality, Augmented Reality and other such immersive environments have gained popularity with the increase in technological trends in the past decade. As they became widely used, the human computer interface design and the designing criteria emerges as a challenging task. Virtual and Augmented Reality provide a wide range of applications ranging from a primitive level like improving learning, education experiences to complex industrial and medical operations. Virtual reality is a viable alternative that can be focussed on, in the future interface design development because it can remove existing generic and complex physical interfaces and replace them with an alternative sensory relayed input form. It provides a natural and efficient mode of interaction, that the users can work with.Virtual and Augmented reality eradicates the need for development of different acceptable standards for user interfaces as it can provide a whole and generic interface to accommodate the work setting.In this paper, we investigated various prospects of applications for user interaction in Virtual and Augemnted realities and the limitations in the respective domains. The paper provides an outline on how the new era of human computer interaction leading to cognition-based communications, and how Virtual and Augmented realities can tailor the user needs and address the future demands which replaces the need for command-based interaction between the humans and computers.


Sign in / Sign up

Export Citation Format

Share Document