scholarly journals Low-Cycle Fatigue Deformation Behavior and Evaluation of Fatigue Life on Extruded Magnesium Alloys

2011 ◽  
Vol 10 ◽  
pp. 1244-1249 ◽  
Author(s):  
K. Shiozawa ◽  
J. Kitajima ◽  
T. Kaminashi ◽  
T. Murai ◽  
T. Takahashi
2011 ◽  
Vol 77 (780) ◽  
pp. 1225-1237
Author(s):  
Kazuaki SHIOZAWA ◽  
Jun KITAJIMA ◽  
Tomohiro KAMINASHI ◽  
Tsutomu MURAI ◽  
Tooru TAKAHASHI

1996 ◽  
Vol 460 ◽  
Author(s):  
D. B. Hanes ◽  
R. Gibala

ABSTRACTThe monotonie mechanical behavior in tension and compression of FeAl has been well documented. However, very little work has been done on the cyclic deformation behavior of this material. In this work, the behavior of FeAl (42 at. % Al) under low cycle fatigue was studied, including the effects of test environments and surface coatings. It was found that the fatigue life of this alloy is limited by environmental embrittlement. This embrittlement process can be equally well prevented by deformation in an oxygen environment or by coating the alloy with a protective film. The type of film applied appears to have little effect. Similar results were seen in monotonie testing.


Author(s):  
Peng Zhao ◽  
Fu-Zhen Xuan ◽  
De-Long Wu

Fatigue testing for an important turbine rotor material (X12CrMoWVNbN10-1-1 steel) was carried out over a wide range of strain and stress amplitudes at 873K. Particular attention was paid to the effect of control mode on the cyclic deformation behavior and life assessment at elevated temperature. Two main domains were observed depending both on the strain and stress amplitudes, where the effect of control mode was different. In the micro plastic deformation domain, the cyclic softening is slight and there is no clear difference in fatigue behavior between the stress and strain modes. In the plastic damage regime, stress cycling causes more significant softening or damage than strain cycling. The dependence of damage behavior on the evolution of dislocation substructure was focused. On the other hand, it is not possible to use strain based life model to predict fatigue life with the test results under a different control mode. A unified energy-based model is proposed based upon the deformation mechanism and the experimental results, which can assess the low cycle fatigue life with different control modes. The results obtained in this study could have significant implications in the design of structures.


2018 ◽  
Vol 763 ◽  
pp. 867-874
Author(s):  
Yu Shu Liu ◽  
Ke Peng Chen ◽  
Guo Qiang Li ◽  
Fei Fei Sun

Buckling Restrained Braces (BRBs) are effective energy dissipation devices. The key advantages of BRB are its comparable tensile and compressive behavior and stable energy dissipation capacity. In this paper, low-cycle fatigue performance of domestic BRBs is obtained based on collected experimental data under constant and variable amplitude loadings. The results show that the relationship between fatigue life and strain amplitude satisfies the Mason-Coffin equation. By adopting theory of structural reliability, this paper presents several allowable fatigue life curves with different confidential levels. Besides, Palmgren-Miner method was used for calculating BRB cumulative damages. An allowable damage factor with 95% confidential level is put forward for assessing damage under variable amplitude fatigue. In addition, this paper presents an empirical criterion with rain flow algorithm, which may be used to predict the fracture of BRBs under severe earthquakes and provide theory and method for their engineering application. Finally, the conclusions of the paper were vilified through precise yet conservative prediction of the fatigue failure of BRB.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4070
Author(s):  
Andrea Karen Persons ◽  
John E. Ball ◽  
Charles Freeman ◽  
David M. Macias ◽  
Chartrisa LaShan Simpson ◽  
...  

Standards for the fatigue testing of wearable sensing technologies are lacking. The majority of published fatigue tests for wearable sensors are performed on proof-of-concept stretch sensors fabricated from a variety of materials. Due to their flexibility and stretchability, polymers are often used in the fabrication of wearable sensors. Other materials, including textiles, carbon nanotubes, graphene, and conductive metals or inks, may be used in conjunction with polymers to fabricate wearable sensors. Depending on the combination of the materials used, the fatigue behaviors of wearable sensors can vary. Additionally, fatigue testing methodologies for the sensors also vary, with most tests focusing only on the low-cycle fatigue (LCF) regime, and few sensors are cycled until failure or runout are achieved. Fatigue life predictions of wearable sensors are also lacking. These issues make direct comparisons of wearable sensors difficult. To facilitate direct comparisons of wearable sensors and to move proof-of-concept sensors from “bench to bedside,” fatigue testing standards should be established. Further, both high-cycle fatigue (HCF) and failure data are needed to determine the appropriateness in the use, modification, development, and validation of fatigue life prediction models and to further the understanding of how cracks initiate and propagate in wearable sensing technologies.


2016 ◽  
Vol 853 ◽  
pp. 246-250 ◽  
Author(s):  
Tao Fang ◽  
Qian Hua Kan ◽  
Guo Zheng Kang ◽  
Wen Yi Yan

Experiments on U75V rail steel were carried out to investigate the cyclic feature, ratcheting behavior and low-cycle fatigue under both strain- and stress-controlled loadings at room temperature. It was found that U75V rail steel shows strain amplitude dependent cyclic softening feature, i.e., the responded stress amplitude under strain-controlled decreases with the increasing number of cycles and reaches a stable value after about 20th cycle. Ratcheting strain increases with an increasing stress amplitude and mean stress, except for stress ratio, and the ratcheting strain in failure also increases with an increasing stress amplitude, mean stress and stress ratio. The low-cycle fatigue lives under cyclic straining decrease linearly with an increasing strain amplitude, the fatigue lives under cyclic stressing decrease with an increasing mean stress except for zero mean stress, and decrease with an increasing stress amplitude. Ratcheting behavior with a high mean stress reduces fatigue life of rail steel by comparing fatigue lives under stress cycling with those under strain cycling. Research findings are helpful to evaluate fatigue life of U75V rail steel in the railways with passenger and freight traffic.


2006 ◽  
Vol 514-516 ◽  
pp. 804-809
Author(s):  
S. Gao ◽  
Ewald Werner

The forging die material, a high strength steel designated W513 is considered in this paper. A fatigue damage model, based on thermodynamics and continuum damage mechanics, is constructed in which both the previous damage and the loading sequence are considered. The unknown material parameters in the model are identified from low cycle fatigue tests. Damage evolution under multi-level fatigue loading is investigated. The results show that the fatigue life is closely related to the loading sequence. The fatigue life of the materials with low fatigue loading first followed by high fatigue loading is longer than that for the reversed loading sequence.


Sign in / Sign up

Export Citation Format

Share Document