scholarly journals Development of Process for Disposal of Plastic Waste Using Plasma Pyrolysis Technology and Option for Energy Recovery

2012 ◽  
Vol 42 ◽  
pp. 420-430 ◽  
Author(s):  
M. Punčochář ◽  
B. Ruj ◽  
P.K. Chatterj
2017 ◽  
Vol 148 ◽  
pp. 925-934 ◽  
Author(s):  
Shafferina Dayana Anuar Sharuddin ◽  
Faisal Abnisa ◽  
Wan Mohd Ashri Wan Daud ◽  
Mohamed Kheireddine Aroua

2018 ◽  
Vol 7 (4.35) ◽  
pp. 534 ◽  
Author(s):  
L. Surenderan ◽  
Juniza Md Saad ◽  
Hui Zhou ◽  
Hesam Neshaeimoghaddam ◽  
Adlansyah Abdul Rahman

Increase in the energy usage and declining of non-renewable fossil fuels has changed the perceptions to energy recovery methods to satisfy the need of the energy. Through extensive research and innovation of technology, especially to recover the plastic waste to energy feedstock has been developed. The chosen plastic waste samples are polyethylene terephthalate (PET), high-density polyethylene (HDPE), and polypropylene (PP). This sample is collected from daily household waste and was characterized according to the resin types or plastic types. In this research the determination of the moisture content and ash analysis has been carried out using proximate analysis and also determination of the carbon, hydrogen, nitrogen, and sulphur content has been carried out by using the ultimate analysis. In addition, the calorific value of the samples has been determined and activation energy is obtained based on thermogravimetric analysis (TGA) data. The chosen kinetic modelling is modified Arrhenius equation. According to the results, HDPE was the best choice for energy recovery from waste plastics in Malaysia due to high calorific value, low activation energy, low moisture content and ash content and it has low sulphur content among all the plastic samples experimented.


2018 ◽  
Vol 31 ◽  
pp. 05013
Author(s):  
Nurul Hidayah ◽  
Syafrudin

Wastes from landfills originate from many spheres of life. These are produces as a result of human activities either domestically or industrially. The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste of plastic. Hence, this paper aims review at utilizing of plastic as an alternative fuel.


2017 ◽  
Vol 107 ◽  
pp. 222-226 ◽  
Author(s):  
Chinnathan Areeprasert ◽  
Jarudej Asingsamanunt ◽  
Supachot Srisawat ◽  
Jeerattikul Kaharn ◽  
Bundit Inseemeesak ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 24 (41) ◽  
pp. no-no
Author(s):  
T. GEIGER ◽  
H. KNOPF ◽  
G. LEISTNER ◽  
R. ROEMER ◽  
H. SEIFERT

2020 ◽  
Vol 12 (5) ◽  
pp. 2088 ◽  
Author(s):  
Irena Wojnowska-Baryła ◽  
Dorota Kulikowska ◽  
Katarzyna Bernat

This article focuses on the end-of-life management of bio-based products by recycling, which reduces landfilling. Bio-plastics are very important materials, due to their widespread use in various fields. The advantage of these products is that they primarily use renewable materials. At its end-of-life, a bio-based product is disposed of and becomes post-consumer waste. Correctly designing waste management systems for bio-based products is important for both the environment and utilization of these wastes as resources in a circular economy. Bioplastics are suitable for reuse, mechanical recycling, organic recycling, and energy recovery. The volume of bio-based waste produced today can be recycled alongside conventional wastes. Furthermore, using biodegradable and compostable bio-based products strengthens industrial composting (organic recycling) as a waste management option. If bio-based products can no longer be reused or recycled, it is possible to use them to produce bio-energy. For future effective management of bio-based waste, it should be determined how these products are currently being managed. Methods for valorizing bio-based products should be developed. Technologies could be introduced in conjunction with existing composting and anaerobic digestion infrastructure as parts of biorefineries. One option worth considering would be separating bio-based products from plastic waste, to maintain the effectiveness of chemical recycling of plastic waste. Composting bio-based products with biowaste is another option for organic recycling. For this option to be viable, the conditions which allow safe compost to be produced need to be determined and compost should lose its waste status in order to promote bio-based organic recycling.


2020 ◽  
Vol 10 (13) ◽  
pp. 4601
Author(s):  
Manuel Jesús Hermoso-Orzáez ◽  
Roberta Mota-Panizio ◽  
Luis Carmo-Calado ◽  
Paulo Brito

The recovery of urban waste is a social demand and a measure of the energy-environmental sustainability of cities and regions. In particular, waste of electrical origin, waste of electrical and electronic materials (WEEE) can be recovered with great success. The plastic fraction of these wastes allows their gasification mixed with biomass, and the results allow for producing syngas with a higher energy potential. This work allows for obtaining energy from the recovery of obsolete materials through thermochemical conversion processes of the plastic waste from the disassembly of the luminaires by mixing the said plastic waste in different proportions with the biomass of crop residues (olive). The gasification tests of these mixtures were carried out in a downstream fixed-bed drown daft reactor, at temperatures of approximately 800 °C. The results demonstrate the applied technical and economic feasibility of the technology by thermal gasification, for the production of LHV (Low Heating Value) syngas with highest power energy (more than 5 MJ/m3) produced in mixtures of up to 20% of plastic waste. This study was complemented with the economic-financial analysis. This research can be used as a case study for the energy recovery through gasification processes of plastic waste from luminaires (WEEE), mixed with agricultural biomass that is planned to be carried out on a large scale in the Alentejo (Portugal), as a solution applied in circular economy strategies.


Sign in / Sign up

Export Citation Format

Share Document