scholarly journals Characterization Studies on Waste Plastics as a Feedstock for Energy Recovery in Malaysia

2018 ◽  
Vol 7 (4.35) ◽  
pp. 534 ◽  
Author(s):  
L. Surenderan ◽  
Juniza Md Saad ◽  
Hui Zhou ◽  
Hesam Neshaeimoghaddam ◽  
Adlansyah Abdul Rahman

Increase in the energy usage and declining of non-renewable fossil fuels has changed the perceptions to energy recovery methods to satisfy the need of the energy. Through extensive research and innovation of technology, especially to recover the plastic waste to energy feedstock has been developed. The chosen plastic waste samples are polyethylene terephthalate (PET), high-density polyethylene (HDPE), and polypropylene (PP). This sample is collected from daily household waste and was characterized according to the resin types or plastic types. In this research the determination of the moisture content and ash analysis has been carried out using proximate analysis and also determination of the carbon, hydrogen, nitrogen, and sulphur content has been carried out by using the ultimate analysis. In addition, the calorific value of the samples has been determined and activation energy is obtained based on thermogravimetric analysis (TGA) data. The chosen kinetic modelling is modified Arrhenius equation. According to the results, HDPE was the best choice for energy recovery from waste plastics in Malaysia due to high calorific value, low activation energy, low moisture content and ash content and it has low sulphur content among all the plastic samples experimented.

Author(s):  
Nabil Kechaou ◽  
E Ammar

The Municipal Solid Waste of Agareb (Sfax –Tunisia), characterized by high organic fraction and moisture contents is the most worrying pollution source that must be managed by innovative treatment and recycling technologies. Bio-drying, as a waste to energy conversion technology, aims at reducing moisture content of this organic matter. This concept,  similar to composting, is accomplished by using the heat generated from the microbial degradation of the waste matrix, while forced aeration is used. The purpose of this work was to reduce the moisture content of the waste, by maximizing drying and minimizing organic matter biodegradation, in order to produce a solid recovered fuel with high calorific value.Keywords: Municipal solid wastes; organic matter; biodrying; composting; energy recovery.


2018 ◽  
Vol 54 (2A) ◽  
pp. 56
Author(s):  
Phung Chi Vy

Domestic solid wastes are classified into 10 samples of 04 groups with different sizes: 2 samples with sizes under and over 120 mm (M1-1, M1-2); 2 samples with sizes under and over 80 mm (M2-1, M2-2); 2 samples with sizes under and over 40 mm (M3-1, M3-2); 4 samples with sizes under 40 mm, 40 to 80 mm, 80 to 120 mm and over 120 mm (M4-1, M4-2, M4-3, M4-4). Results of sorting 10 solid waste samples into food, cloth, wood, plastic, paper, rubber/leather, metal, glass, other organic and inorganic components shown that recycled combustible, non-recycled combustible portions are ranged from 15,46 to 93,90 %, from 5,34 to 80,17 %, respectively. The density of 10 compressed garbage samples is ranged from 525,9 to 2016,7 kg/m3; moisture contents are ranged from 18.03 to 20.92 %. Ash content is ranged from 1.12 to 9.49 % dry weight; Calorific value is ranged from 3164,9 to 5757,0 kcal/kg of garbage. The volume of leached water from 10 kg wet garbage pressed by 250 kg load in 2 days is 300 ml (equivalent to 327,1 g). Results of elemental composition analysis shown that the contents of C, H, N, Cl, S are ranged from 35,00 to 51,96, from 6,01 to 6,23, from 0,41 to 0,88, from 0,44 to 0,56, from 0,14 to 0,84 %, respectively. On this basis, the author have proposed a waste-to-energy plant with capacity of 250 tons of waste/day to generate the electricity with capacity of 17,0 MW/day.


Oil Shale ◽  
2018 ◽  
Vol 35 (4) ◽  
pp. 339 ◽  
Author(s):  
M AINTS ◽  
P PARIS ◽  
I TUFAIL ◽  
I JÕGI ◽  
H AOSAAR ◽  
...  

2018 ◽  
Vol 31 ◽  
pp. 05013
Author(s):  
Nurul Hidayah ◽  
Syafrudin

Wastes from landfills originate from many spheres of life. These are produces as a result of human activities either domestically or industrially. The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste of plastic. Hence, this paper aims review at utilizing of plastic as an alternative fuel.


2019 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Mutiara Fadila Rania ◽  
I Gede Eka Lesmana ◽  
Eka Maulana

The garbage dumping in Tegal Regency has reached 989.8 m3/day and increasing every year. The percentage of waste in Murareja landfill is dominated by plastic waste which is 40.15%. The plastic waste will be processed by pyrolysis by utilizing Refuse Derived Fuel (RDF) as its fuel. The percentage of garbage in Murareja TPA that can be used as RDF is quite high, which is 28.7%, consisting of 15.35% paper waste, 2.35% rubber / leather waste, 2% garbage cloth, 1% wood waste, and 8% plastic waste. The waste is considered potentially to be produced into RDF. The production of RDF aims to convert the combustible waste fraction from 4K1P waste (Paper, Wood, Fabrics, Rubber / Leather and Plastics) to be fueled. Therefore it is important to know how much potential of 4K1P waste to be processed into RDF, and how optimal calorific value of RDF is to be used as fuel of pyrolysis incinerator on Waste Power Generation at Murareja TPA, Tegal regency. Based on the result of the research that has been done, the theoretical value of the theoretical value of 4K1P RDF briquette is 3677.0945 - 5507.114 [kcal / kg]. From the actual data obtained with laboratory testing the value of RDF beverage caloric waste 4K1P RDF amounted to 3973.45 [kCal / kg]. The optimal calorific value of RDF required as a pyrolysis incinerator fuel is 3248.809 [kcal / kg]. Based on the results of laboratory tests, the percentage of moisture content, ash content, volatile content and carbon content are 4.68%, 11.64%, 7.81% and 75.87% respectively.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1442 ◽  
Author(s):  
Sang Yeop Lee ◽  
Se Won Park ◽  
Md Tanvir Alam ◽  
Yean Ouk Jeong ◽  
Yong-Chil Seo ◽  
...  

Proper treatment and careful management of sewage sludge are essential because its disposal can lead to adverse environmental impacts such as public health hazards, as well as air, soil, and water pollution. Several efforts are being made currently not only to safely dispose of sewage sludge but also to utilize it as an energy source. Therefore, in this study, initiatives were taken to valorize sewage sludge cake by reducing the moisture content and increasing the calorific value by applying a hydrothermal treatment technique for efficient energy recovery. The sludge cake treated at 200 °C for 1 h was found to be the optimum condition for hydrothermal carbonization, as, in this condition, the caloric value of the treated sludge increased by 10% and the moisture content removed was 20 wt.%. To recover energy from the hydrothermally treated sludge, a gasification technology was applied at 900 °C. The results showed that the product gas from hydrothermally treated sludge cake had a higher lower heating value (0.98 MJ/Nm3) and higher cold gas efficiency (5.8%). Furthermore, compared with raw sludge cake, less tar was generated during the gasification of hydrothermally treated sludge cake. The removal efficiency was 28.2%. Overall results depict that hydrothermally treated sewage sludge cake could be a good source of energy recovery via the gasification process.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Venkata Ravi Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

AbstractLandfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5–20 yr old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies include determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.7 to 31.3% and no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.9 to 71.7% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.4 to 21.8 MJ kg− 1. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


2019 ◽  
Vol 7 (2) ◽  
pp. 055
Author(s):  
Bella Tri Andriastuti ◽  
Arifin Arifin ◽  
Laili Fitria

Abstract Waste management in Pontianak City is still managed improperly so there are still lots of waste dump in landfill area. The purpose of this study are to analyze the amount and the potential of using plastic waste to become ecobrick in West Pontianak Subdistrict. Sampling is accordance with SNI 19-3964-1994 in each village office in the West Pontianak Subdistrict. The total of plastics waste in the West Pontianak Subdistrict is 850.108,20922 kg/year or 850.108 tons/year which consists of plastics waste that can be processed into ecobrick that is 652.306,13825 kg/year or 652,306 tons/year and the generation of plastics waste that cannot be processed into ecobrick is 197.802,07097 kg/year 197,802 tons/year. The potential value of ecobrick in reducing plastics waste in West Pontianak Subdistrict is 77% plastics waste can be processed into ecobrick and by 33% it cannot be processed into ecobrick. Based on this research, the potential of ecobrick produced in 1 year which is 2.481.940 pieces for a 600 ml volume bottle or 1.119.177 units for a 1500 ml volume bottle. Keywords: ecobrick, household waste, plastics waste, Pontianak, IndonesiaAbstrak Pengelolaan sampah di Kota Pontianak masih belum dikelola dengan baik sehingga masih banyak sampah yang berakhir di TPA khususnya sampah plastik. Tujuan dalam penelitian ini adalah menganalisis jumlah timbulan sampah plastik dan menganalisis potensi ecobrick dalam mengurangi sampah plastik rumah tangga di Kecamatan Pontianak Barat. Sampling dilakukan sesuai SNI 19-3694-1994 pada tiap kelurahan di Kecamatan Pontianak Barat. Berdasarkan hasil sampling, total timbulan sampah plastik rumah tangga di Kecamatan Pontianak Barat tahun 2019 yaitu sebesar 850.108,20922 kg/tahun atau 850.108 ton/tahun yang terdiri dari timbulan sampah plastik yang dapat diolah menjadi eobrick yaitu sebesar 652.306,13825 kg/tahun atau 652,306 ton/tahun dan timbulan sampah plastik yang tidak dapat diolah menjadi ecobrick yaitu sebesar 197.802,07097 kg/tahun 197,802 ton/tahun. Nilai potensi ecobrick dalam mengurangi sampah plastik rumah tangga di Kecamatan Pontianak Barat yaitu sebesar 77% sampah plastik dapat diolah menjadi ecobrick dan sebesar 33% tidak dapat diolah menjadi ecobrick. Potensi ecobrick yang dapat dihasilkan dalam 1 tahun yaitu sebanyak 2.481.940 buah untuk botol volume 600 ml atau sebanyak 1.119.177 buah untuk ukuran botol volume 1500 ml. Kata Kunci : ecobrick, sampah rumah tangga, sampah plastik, Pontianak, Indonesia.


2021 ◽  
Author(s):  
V R Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

Abstract Landfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5-20 yr old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies included determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.7 to 31.3%, however, no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.9 to 71.7% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.4 to 21.8 MJ kg-1. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


2020 ◽  
Author(s):  
V R Sankar Cheela ◽  
Michele John ◽  
Brajesh Dubey

Abstract Landfills are urban stocks and resource reservoirs for potential energy recovery. The purpose of this study is to evaluate the amount of energy that could be recovered from aged waste (around 5 - 20 years old) recovered from landfills. Investigations were conducted on the physical and chemical properties of refuse-derived fuel (RDF) prepared from recovered landfill waste (RLW) in Andhra Pradesh, India. Waste characterization studies included determination of waste composition, proximity analysis, ultimate analysis, and energy content. The moisture content ranged between 25.70 to 31.30%, however, no trend was observed with age. In the ultimate analysis, the percentage of carbon increased from 42.94% to 71.66% with the age of the samples, this is due to an increase in the plastic content over time. The calorific value of the recovered landfill waste ranged from 10.35 MJ/kg to 21.83 MJ/kg. From the findings, it can be summarized that the RDF can potentially be utilized as a feedstock for the recovery of energy from RLW. The results from this study will assist policy makers and local authorities in designing and developing strategies for resource and energy recovery from landfills in different urban cites across the globe.


Sign in / Sign up

Export Citation Format

Share Document