scholarly journals Sedimentary diagenesis and pore characteristics for the reservoir evaluation of Domanik formations (Semiluksk and Mendymsk) in the central part of Volga-Ural petroleum province

Author(s):  
Yousef Ibrahem ◽  
V.P. Morozov ◽  
V. Sudakov ◽  
I. Idrisov ◽  
A.N. Kolchugin
2021 ◽  
Vol 11 (11) ◽  
pp. 4005-4018
Author(s):  
Ahmed N. Al-Dujaili ◽  
Mehdi Shabani ◽  
Mohammed S. AL-Jawad

AbstractThis study has been accomplished by testing three different models to determine rocks type, pore throat radius, and flow units for Mishrif Formation in West Qurna oilfield in Southern Iraq based on Mishrif full diameter cores from 20 wells. The three models that were used in this study were Lucia rocks type classification, Winland plot was utilized to determine the pore throat radius depending on the mercury injection test (r35), and (FZI) concepts to identify flow units which enabled us to recognize the differences between Mishrif units in these three categories. The study of pore characteristics is very significant in reservoir evaluation. It controls the storage mechanism and reservoir fluid properties of the permeable units while pore structure is a critical controlling factor for the petrophysical properties and multiphase-flow characteristics in reservoir rocks. Flow zone indicator (FZI) has been used to identify the hydraulic flow units approach (HFUs). Each (HFU) was reproduced by certain FZI and was supposed to have similar geological and petrophysical properties. The samples were from four lithofacies, mA, CRII, mB1, and mB2. Because of the wide range of cored-wells samples (20 wells), this paper is updated the previous studies and indicated some differences in the resulting categories. It was noticed as results of this study that the rocks types of the lower Mishrif were mostly ranged from wackestone to packstone in the upper part of mB2 which reflected mid-ramp facies while the upper part of mB2 referred to shoal facies and for the mB1 unit the rocks types mostly range from packstone to grainstone with some points as wackestone marked as shoal and rudist bioherm facies. Grainstone relatively decreases with the increasing of depth from upper to lower Mishrif while wackestone and packstone indicated increasing in the same direction. The unit mA is marked as mesopores and macropores, while megapores and macropores feature increased in mB1 which has been noticed in the northern part of West Qurna oilfield due to increasing shoal and rudist bioherm facies, the mB2 unit revealed increasing in mesoporous and decreasing in megaporous. The upper Mishrif (mA) has three flow units, while the lower Mishrif (mB1, mB2) has eight flow units four for each reservoir unit.


2021 ◽  
Vol 80 (3) ◽  
pp. 2659-2670
Author(s):  
Zhihan Fan ◽  
Cong Hu ◽  
Qianlin Zhu ◽  
Yonggang Jia ◽  
Dianjun Zuo ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2678 ◽  
Author(s):  
Wei Yu ◽  
Xu Liang ◽  
Frank Mi-Way Ni ◽  
Abimbola Grace Oyeyi ◽  
Susan Tighe

This study investigated the pore structure and its effects on mechanical properties of lightweight cellular concrete (LCC) in order to understand more and detailed characteristics of such structure. As part of investigation, environment scanning electron microscopes (ESEM) and industrial high-definition (HD) macro photography camera were separately used to capture and compare images of specimens. Physical properties of the pore structure, including pore area, size, perimeter, fit ellipse, and shape descriptors, were studied based on the image processing technology and software applications. Specimens with three different densities (400, 475, and 600 kg/m3) were prepared in the laboratory. Firstly, the effects of density on the characteristics of pore structure were investigated; furthermore, mechanical properties (compressive strength, modulus of elasticity and Poisson’s ratio, flexural strength and splitting tensile strength of LCC) were tested. The relationships among pore characteristics, density, and mechanical properties were analyzed. Based on the results obtained from the lab test—comparisons made between specimens with high-densities and those with low-densities—it was found significant variability in bubble size, thickness, and irregularity of pores. Furthermore, the increase of density is accompanied by better mechanical properties, and the main influencing factors are the thickness of the solid part and the shape of the bubble. The thicker of solid part and more regular pores of LCC has, the better mechanical properties are.


Sign in / Sign up

Export Citation Format

Share Document