scholarly journals Glutaredoxin 2 promotes SP-1-dependent CSPG4 transcription and migration of wound healing NG2 glia and glioma cells: Enzymatic Taoism

Redox Biology ◽  
2022 ◽  
Vol 49 ◽  
pp. 102221
Author(s):  
Christina Wilms ◽  
Klaudia Lepka ◽  
Felix Häberlein ◽  
Steven Edwards ◽  
Jörg Felsberg ◽  
...  
2020 ◽  
Vol 16 ◽  
Author(s):  
Kuldeep B. Pawar ◽  
Shivani Desai ◽  
Ramesh R. Bhonde ◽  
Ritesh P. Bhole ◽  
Atul A. Deshmukh

: Diabetes is a chronic metabolic disorder of endocrine system characterized by increase in blood glucose level. Several factors such as pancreatic damage, oxidative stress, infection, genetic factor, obesity, liver dysfunction play a vital role in pathogenesis of diabetes which further lead to serious diabetic complications. Diabetic wound is one such complication where the wound formation occurs, especially due to pressure and its healing process is disrupted due to factors such as hyperglycemia, neuropathy, nephropathy, peripheral vascular disease, reduction of blood flow, atherosclerosis, impaired fibroblast. Process of wound healing is delayed due to different abnormalities like alteration in nitric oxide level, increase in aldose reductase, sorbitol and fructose. Therefore, diabetic wound requires more time to heal as compare to normal wound. Healing time is delayed in diabetic wound due to many factors such as stress, decreased oxygenation supply, infection, decreased blood flow, impaired proliferation and migration rate, impaired growth factor production, impaired keratinocytes proliferation and migration, and altered vascular endothelial mediators. The current treatment for diabetic wound includes wound patches, oxygenation therapy, hydrogel patches, gene therapy, laser therapy, and stem cell therapy. Medications with phytoconstituents is also one way to manage diabetic wound, but it is not more effective for quick healing. The objective of this review is to understand the potential of various management options which are available for diabetic wound, with a special focus on biological cells.


2021 ◽  
Vol 14 (4) ◽  
pp. 301
Author(s):  
Yayoi Kawano ◽  
Viorica Patrulea ◽  
Emmanuelle Sublet ◽  
Gerrit Borchard ◽  
Takuya Iyoda ◽  
...  

Hyaluronic acid (HA) has been known to play an important role in wound healing process. However, the effect of molecular weight (MW) of exogenously administered HA on the wound healing process has not been fully understood. In this study, we investigated HA with different MWs on wound healing process using human epidermal keratinocytes and dermal fibroblasts. Cell proliferation and migration ability were assessed by water soluble tetrazolium (WST) assay and wound scratch assay. We examined the effect of HA addition in a full-thickness wound model in mice and the gene expression related to wound healing. Proliferation and migration of HaCaT cells increased with the increase of MW and concentration of HA. Interleukin (IL-1β), IL-8 and vascular endothelial growth factor (VEGF) as well as matrix metalloproteinase (MMP)-9 and MMP-13 were significantly upregulated by high molecular weight (HMW) HA in keratinocytes. Together with VEGF upregulation and the observed promotion of HaCaT migration, HA with the MW of 2290 kDa may hold potential to improve re-epithelialization, a critical obstacle to heal chronic wounds.


Author(s):  
Sushmitha Sriramulu ◽  
Antara Banerjee ◽  
Ganesan Jothimani ◽  
Surajit Pathak

AbstractObjectivesWound healing is a complex process with a sequence of restoring and inhibition events such as cell proliferation, differentiation, migration as well as adhesion. Mesenchymal stem cells (MSC) derived conditioned medium (CM) has potent therapeutic functions and promotes cell proliferation, anti-oxidant, immunosuppressive, and anti-apoptotic effects. The main aim of this research is to study the role of human umbilical cord-mesenchymal stem cells (UC-MSCs) derived CM in stimulating the proliferation of human keratinocytes (HaCaT).MethodsFirstly, MSC were isolated from human umbilical cords (UC) and the cells were then cultured in proliferative medium. We prepared and collected the CM after 72 h. Morphological changes were observed after the treatment of HaCaT cells with CM. To validate the findings, proliferation rate, clonal efficiency and also gene expression studies were performed.ResultsIncreased proliferation rate was observed and confirmed with the expression of Proliferating Cell Nuclear Antigen (PCNA) after treatment with HaCaT cells. Cell-cell strap formation was also observed when HaCaT cells were treated with CM for a period of 5–6 days which was confirmed by the increased expression of Collagen Type 1 Alpha 1 chain (Col1A1).ConclusionsOur results from present study depicts that the secretory components in the CM might play a significant role by interacting with keratinocytes to promote proliferation and migration. Thus, the CM stimulates cellular proliferation, epithelialization and migration of skin cells which might be the future promising application in wound healing.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Henna Roshini Alexander ◽  
Sharifah Sakinah Syed Alwi ◽  
Latifah Saiful Yazan ◽  
Fatin Hanani Zakarial Ansar ◽  
Yong Sze Ong

Wound healing is a regulated biological event that involves several processes including infiltrating leukocyte subtypes and resident cells. Impaired wound healing is one of the major problems in diabetic patients due to the abnormal physiological changes of tissues and cells in major processes. Thymoquinone, a bioactive compound found in Nigella sativa has been demonstrated to possess antidiabetic, anti-inflammatory, and antioxidant effects. Today, the rapidly progressing nanotechnology sets a new alternative carrier to enhance and favour the speed of healing process. In order to overcome its low bioavailability, TQ is loaded into a colloidal drug carrier known as a nanostructured lipid carrier (NLC). This study aimed to determine the effect of TQ-NLC and TQ on cell proliferation and migration, mode of cell death, and the antioxidant levels in normal and diabetic cell models, 3T3 and 3T3-L1. Cytotoxicity of TQ-NLC and TQ was determined by MTT assay. The IC10 values obtained for 3T3-L1 treated with TQ-NLC and TQ for 24 hours were 4.7 ± 3.3 and 5.3 ± 0.6 μM, respectively. As for 3T3, the IC10 values obtained for TQ-NLC and TQ at 24 hours were 4.3 ± 0.17 and 3.9 ± 2.05 μM, respectively. TQ-NLC was observed to increase the number of 3T3 and 3T3-L1 healthy cells (87–95%) and gradually decrease early apoptotic cells in time- and dose-dependant manner compared with TQ. In the proliferation and migration assay, 3T3-L1 treated with TQ-NLC showed higher proliferation and migration rate (p<0.05) compared with TQ. TQ-NLC also acted as an antioxidant by reducing the ROS levels in both cells after injury at concentration as low as 3 μM. Thus, this study demonstrated that TQ-NLC has better proliferation and migration as well as antioxidant effect compared with TQ especially on 3T3-L1 which confirms its ability as a good antidiabetic and antioxidant agent.


Zygote ◽  
2021 ◽  
pp. 1-11
Author(s):  
Fang Tian ◽  
Huimin Ying ◽  
Shuaiju Liao ◽  
Yuanyuan Wang ◽  
Quansheng Wang

Summary Long non-coding RNAs (lncRNAs) exert vital functions in the occurrence and development of various tumours. The aim of this study was to examine the regulatory effect and underlying molecular mechanism of lncRNA small nucleolar RNA host gene 14 (SNHG14) on the proliferation, invasion and migration of thyroid tumour cells. The expression of SNHG14 in thyroid tumour cell lines was determined using qRT-PCR. CCK-8 and western blot were used to detect the effects of SNHG14 on proliferation and apoptosis of thyroid tumour cells. The effect of SNHG14 on the migration and invasion of thyroid tumour cells was analyzed using immunofluorescence, wound-healing and transwell assays. A targeting relationship between SNHG14 and miR-93-5p was determined using bioinformatics software and luciferase reporter assays. In addition, CCK-8, immunofluorescence, wound-healing and transwell assays were applied to demonstrate that SNHG14 promoted the proliferation, migration and invasion of thyroid tumour cells by targeting miR-93-5p. The biological function of SNHG14 in vivo was explored through a xenograft model and immunohistochemistry. SNHG14 was upregulated in thyroid tumour cells compared with normal cells. Downregulation of SNHG14 effectively reduced the proliferation, migration and invasion of TPC-1 cells, and induced cell apoptosis. Moreover, SNHG14 directly targeted miR-93-5p and there was a negative correlation between them. Further functional experiments illustrated that miR-93-5p overexpression dramatically reversed the promoting role of SNHG14 in proliferation, migration and invasion of TPC-1 cells. Our results demonstrated that SNHG14 promotes the proliferation, invasion and migration of thyroid tumour cells by downregulating miR-93-5p.


2018 ◽  
Vol 9 (4) ◽  
pp. 74 ◽  
Author(s):  
Diana Sequeira ◽  
Catarina Seabra ◽  
Paulo Palma ◽  
Ana Cardoso ◽  
João Peça ◽  
...  

Background: The development of materials with bioregenerative properties is critically important for vital pulp therapies and regenerative endodontic procedures. The aim of this study was to evaluate the cytocompatibility and cytotoxicity of a new endodontic biomaterial, PulpGuard, in comparison with two other biomaterials widely used in endodontic procedures, ProRoot Mineral Trioxide Aggregate (MTA) and Biodentine. Methods: Apical papilla cells (APCs) were isolated from third molars with incomplete rhizogenesis from patients with orthodontic indication for dental extraction. Cultured APCs were incubated for 24, 48, or 72 h with different dilutions of eluates prepared from the three materials. Cellular viability, mobility, and proliferation were assessed in vitro using the Alamar Blue assay and a wound-healing test. The cells were also cultured in direct contact with the surface of each material. These were then analyzed via Scanning Electron Microscopy (SEM), and the surface chemical composition was determined by Energy-Dispersive Spectroscopy (EDS). Results: Cells incubated in the presence of eluates extracted from ProRoot MTA and PulpGuard presented rates of viability comparable to those of control cells; in contrast, undiluted Biodentine eluates induced a significant reduction of cellular viability. The wound-healing assay revealed that eluates from ProRoot MTA and PulpGuard allowed for unhindered cellular migration and proliferation. Cellular adhesion was observed on the surface of all materials tested. Consistent with their disclosed composition, EDS analysis found high relative abundance of calcium in Biodentine and ProRoot MTA and high abundance of silicon in PulpGuard. Significant amounts of zinc and calcium were also present in PulpGuard discs. Concerning solubility, Biodentine and ProRoot MTA presented mild weight loss after eluate extraction, while PulpGuard discs showed significant water uptake. Conclusions: PulpGuard displayed a good in vitro cytocompatibility profile and did not significantly affect the proliferation and migration rates of APCs. Cells cultured in the presence of PulpGuard eluates displayed a similar profile to those cultured with eluates from the widely used endodontic cement ProRoot MTA.


Author(s):  
Ao Zhan ◽  
Bo Lei ◽  
Honggang Wu ◽  
YueTao Wen ◽  
Liandong Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document