scholarly journals Evaluating the accuracy of CFSR reanalysis hourly wind speed forecasts for the UK, using in situ measurements and geographical information

2015 ◽  
Vol 77 ◽  
pp. 527-538 ◽  
Author(s):  
Ed Sharp ◽  
Paul Dodds ◽  
Mark Barrett ◽  
Catalina Spataru
2021 ◽  
Author(s):  
Karolin S. Ferner ◽  
K. Heinke Schlünzen ◽  
Marita Boettcher

<p>Urbanisation locally modifies the regional climate: an urban climate develops. For example, the average wind speed in cities is reduced, while the gustiness is increased. Buildings induce vertical winds, which influence the falling of rain. All these processes lead to heterogeneous patterns of rain at ground and on building surfaces. The small-scale spatial rain heterogeneities may cause discomfort for people. Moreover, non-uniform wetting of buildings affects their hydrothermal performance and durability of their facades.</p><p>Measuring rain heterogeneities between buildings is, however, nearly impossible. Building induced wind gusts negatively influence the representativeness of in-situ measurements, especially in densely urbanised areas. Weather radars are usually too coarse and, more importantly, require an unobstructed view over the domain and thus do not measure ground precipitation in urban areas. Consequently, researchers turn to numerical modelling in order to investigate small-scale precipitation heterogeneities between buildings.</p><p>In building science, numerical models are used to investigate rain heterogeneities typically focussing on single buildings and vertical facades. Only few studies were performed for more than a single building or with inclusion of atmospheric processes such as radiation or condensation. In meteorology, increasing computational power now allows the use of small-scale obstacle-resolving models resolving atmospheric processes while covering neighbourhoods.</p><p>In order to assess rain heterogeneities between buildings we extended the micro-scale and obstacle-resolving transport- and stream model MITRAS (Salim et al. 2019). The same cloud microphysics parameterisation as in its mesoscale sister model METRAS (Schlünzen et al., 2018) was applied and boundary conditions for cloud and rain water content at obstacle surfaces were introduced. MITRAS results are checked for plausibility using radar and in-situ measurements (Ferner et al., 2021). To our knowledge MITRAS is the first numerical urban climate model that includes rain and simulates corresponding processes.</p><p>Model simulations were initialised for various wind speeds and mesoscale rain rates to assess their influence on the heterogeneity of falling rain in a domain of 1.9 x 1.7 km² around Hamburg City Hall. We investigated how wind speed or mesoscale rain rate influence the precipitation patterns at ground and at roof level. Based on these results we assessed the height dependence of precipitation. First analyses show that higher buildings receive more rain on their roofs than lower buildings; the results will be presented in detail in our talk.</p><p>Ferner, K.S., Boettcher, M., Schlünzen, K.H. (2021): Modelling the heterogeneity of rain in an urban neighbourhood. Publication in preparation</p><p>Salim, M.H., Schlünzen, K.H., Grawe, D., Boettcher, M., Gierisch, A.M.U., Fock B.H. (2018): The microscale obstacle-resolving meteorological model MITRAS v2.0: model theory. Geosci. Model Dev., 11, 3427–3445, https://doi.org/10.5194/gmd-11-3427-2018.</p><p>Schlünzen, K.H., Boettcher, M., Fock, B.H., Gierisch, A.M.U., Grawe, D., and Salim, M. (2018): Scientific Documentation of the Multiscale Model System M-SYS. Meteorological Institute, Universität Hamburg. MEMI Technical Report 4</p>


2018 ◽  
Vol 10 (10) ◽  
pp. 1655 ◽  
Author(s):  
Nariane Bernardo ◽  
Enner Alcântara ◽  
Fernanda Watanabe ◽  
Thanan Rodrigues ◽  
Alisson Carmo ◽  
...  

The quality control of remote sensing reflectance (Rrs) is a challenging task in remote sensing applications, mainly in the retrieval of accurate in situ measurements carried out in optically complex aquatic systems. One of the main challenges is related to glint effect into the in situ measurements. Our study evaluates four different methods to reduce the glint effect from the Rrs spectra collected in cascade reservoirs with widely differing optical properties. The first (i) method adopts a constant coefficient for skylight correction (ρ) for any geometry viewing of in situ measurements and wind speed lower than 5 m·s−1; (ii) the second uses a look-up-table with variable ρ values accordingly to viewing geometry acquisition and wind speed; (iii) the third method is based on hyperspectral optimization to produce a spectral glint correction, and (iv) computes ρ as a function of wind speed. The glint effect corrected Rrs spectra were assessed using HydroLight simulations. The results showed that using the glint correction with spectral ρ achieved the lowest errors, however, in a Colored Dissolved Organic Matter (CDOM) dominated environment with no remarkable chlorophyll-a concentrations, the best method was the second. Besides, the results with spectral glint correction reduced almost 30% of errors.


2020 ◽  
Author(s):  
Andreas Platis ◽  
Jens Bange ◽  
Konrad Bärfuss ◽  
Beatriz Canadillas ◽  
Marie Hundhausen ◽  
...  

<p>Wind farm far wakes are of particular interest for offshore installations, as turbulence intensity, which is the main driver for wake dissipation, is much lower over the ocean than over land. Therefore, wakes behind offshore wind turbines and wind parks are expected to be much longer than behind onshore parks. </p><p>In situ measurements of the far wakes were missing before the initiation of the research project WIPAFF (WInd PArk Far Fields) in 2015. The main results of which are reported here. WIPAFF has been funded by the German Federal Ministry for Economic Affairs and Energy and ran from November 2015 to April 2019.  The main goal of WIPAFF was to perform a large number of in situ measurements from aircraft operations at hub height behind wind parks in the German Bight (North Sea), to evaluate further SAR images and to update and validate existing meso-scale and industrial models on the basis of the observations to enable a holistic coverage of the downstream wakes.<br> <br>A  unique  dataset  from  airborne in situ data,  remote sensing  by  laser  scanner  and  SAR  gained  during  the WIPAFF  project  proves  that  wakes  up to  several  tens of kilometers exist downstream of offshore wind farms during stable conditions, while under neutral/unstable conditions, the wake length amounts to 15 km or less. Turbulence occurs at the lateral boundaries of the wakes, due to shear between the reduced wind speed inside the wake and the undisturbed flow. Data also indicates that a denser wind park layout increases the wake length additionally due to a higher initial wind speed deficit. The recovery of the decelerated flow in the wake can be modeled as a first order approximation by an exponential function. The project could also reveal that wind-farm parameterizations in the numerical meso-scale WRF model show a feasible agreement with the observations. </p>


2018 ◽  
Vol 8 ◽  
pp. A18 ◽  
Author(s):  
Manuela Temmer ◽  
Jürgen Hinterreiter ◽  
Martin A. Reiss

We present a concept study of a solar wind forecasting method for Earth, based on persistence modeling from STEREO in situ measurements combined with multi-viewpoint EUV observational data. By comparing the fractional areas of coronal holes (CHs) extracted from EUV data of STEREO and SoHO/SDO, we perform an uncertainty assessment derived from changes in the CHs and apply those changes to the predicted solar wind speed profile at 1 AU. We evaluate the method for the time period 2008–2012, and compare the results to a persistence model based on ACE in situ measurements and to the STEREO persistence model without implementing the information on CH evolution. Compared to an ACE based persistence model, the performance of the STEREO persistence model which takes into account the evolution of CHs, is able to increase the number of correctly predicted high-speed streams by about 12%, and to decrease the number of missed streams by about 23%, and the number of false alarms by about 19%. However, the added information on CH evolution is not able to deliver more accurate speed values for the forecast than using the STEREO persistence model without CH information which performs better than an ACE based persistence model. Investigating the CH evolution between STEREO and Earth view for varying separation angles over ∼25–140° East of Earth, we derive some relation between expanding CHs and increasing solar wind speed, but a less clear relation for decaying CHs and decreasing solar wind speed. This fact most likely prevents the method from making more precise forecasts. The obtained results support a future L5 mission and show the importance and valuable contribution using multi-viewpoint data.


Inventions ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 41
Author(s):  
Alina Girleanu ◽  
Florin Onea ◽  
Eugen Rusu

The present work aims to provide a comprehensive picture of the wind energy potential that characterizes the Romanian coastal environment using in situ measurements and reanalysis of wind data (ERA5) that cover a 42–year time interval (1979–2020). A total of 16 reference points (both land and offshore) equally distributed along the Romanian sector are used to evaluate the local wind energy potential, targeting in this way several sites where a renewable wind project could be established. Compared to the in situ measurements (land points), the ERA5 dataset underestimates the wind speed by at least 11.57%, this value increasing as we approach the coastline. From the analysis of the spatial maps, it is likely that the wind speed steadily increases from onshore to offshore, with a sharp variation near the coastline being reported. Furthermore, the assessment of some state-of-the-art offshore wind turbines was conducted using 12 systems defined by rated capacity ranging from 2 to 10 MW. Some scenarios were proposed to identify sustainable offshore wind projects to be implemented in the Romanian coastal zone based on these results.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 206 ◽  
Author(s):  
Tiny Remmers ◽  
Fiona Cawkwell ◽  
Cian Desmond ◽  
Jimmy Murphy ◽  
Eirini Politi

The offshore wind industry has seen unprecedented growth over the last few years. In line with this growth, there has been a push towards more exposed sites, farther from shore, in deeper water with consequent increased investor risk. There is therefore a growing need for accurate, reliable, met-ocean data to identify suitable sites, and from which to base preliminary design and investment decisions. This study investigates the potential of hyper-temporal satellite remote sensing Advanced Scatterometer (ASCAT) data in generating information necessary for the optimal site selection of offshore renewable energy infrastructure, and hence providing a cost-effective alternative to traditional techniques, such as in situ data from public or private entities and modelled data. Five years of the ASCAT 12.5 km wind product were validated against in situ weather buoys and showed a strong correlation with a Pearson coefficient of 0.95, when the in situ measurements were extrapolated with the log law. Temporal variations depicted by the ASCAT wind data followed the same inter-seasonal and intra-annual variations as the in situ measurements. A small diurnal bias of 0.12 m s−1 was observed between the descending swath (10:00 to 12:00) and the ascending swath (20:30 to 22:30), indicating that Ireland’s offshore wind speeds are slightly stronger in the daytime, especially in the nearshore areas. Seasonal maps showed that the highest spatial variability in offshore wind speeds are exhibited in winter and summer. The mean wind speed extrapolated at 80 m above sea level showed that Ireland’s mean offshore wind speeds at hub height ranged between 9.6 m s−1 and 12.3 m s−1. To best represent the offshore wind resource and its spatial distribution, an operational frequency map and a maximum yield frequency map were produced based on the ASCAT wind product in an offshore zone between 20 km and 200 km from the coast. The operational frequency indicates the percentage of time during which the observed local wind speed is between cut-in (3 m/s) and cut-out (25 m/s) for a standard turbine. The operational frequency map shows that the frequency of the wind speed within the cut-in and cut-off range of wind turbines was between 92.4% and 97.2%, while the maximum yield frequency map showed that between 40.6% and 59.5% of the wind speed frequency was included in the wind turbine rated power range. The results showed that the hyper-temporal ASCAT 12.5 km wind speed product (five consecutive years, two observations daily per satellite, two satellites) is representative of wind speeds measured by in situ measurements in Irish waters, and that its ability to depict temporal and spatial variability can assist in the decision-making process for offshore wind farm site selection in Ireland.


2018 ◽  
Vol 18 (23) ◽  
pp. 17191-17206 ◽  
Author(s):  
Gary Lloyd ◽  
Thomas W. Choularton ◽  
Keith N. Bower ◽  
Martin W. Gallagher ◽  
Jonathan Crosier ◽  
...  

Abstract. A key challenge for numerical weather prediction models is representing boundary layer clouds in cold air outbreaks (CAOs). One important aspect is the evolution of microphysical properties as stratocumulus transitions to open cellular convection. Abel et al. (2017) have shown, for the first time from in situ field observations, that the break-up in CAOs over the eastern Atlantic may be controlled by the development of precipitation in the cloud system while the boundary layer becomes decoupled. This paper describes that case and examines in situ measurements from three more CAOs. Flights were conducted using the UK Facility for Airborne Atmospheric Measurements (FAAM) British Aerospace-146 (BAe-146) aircraft in the North Atlantic region around the UK, making detailed microphysical measurements in the stratiform boundary layer. As the cloudy boundary layer evolves prior to break-up, increasing liquid water paths (LWPs) and drop sizes and the formation of liquid precipitation are observed. Small numbers of ice particles, typically a few per litre, are also observed. Eventually LWPs reduce significantly due to loss of water from the stratocumulus cloud (SC) layer. In three of the cases, aerosols are removed from the boundary layer across the transition. This process appears to be similar to those observed in warm clouds and pockets of open cells (POCs) in the subtropics. After break-up, deeper convective clouds form with bases warm enough for secondary ice production (SIP), leading to rapid glaciation. It is concluded that the precipitation is strongly associated with the break-up, with both weakening of the capping inversion and boundary layer decoupling also observed.


2020 ◽  
Vol 27 (4) ◽  
Author(s):  
A. I. Zaytsev ◽  
E. N. Pelinovsky ◽  
D. Dogan ◽  
B. Yalciner ◽  
A. Yalciner ◽  
...  

Purpose. Investigation of the storm surge in Korsakov in the southern part of the Sakhalin Island on November 15, 2019 and comparison of the results of its numerical simulation with the data of in situ measurements constitute the aim of the article. Methods and Results. In situ measurements of the storm surge in Korsakov (the Sakhalin region) were performed and the data on the flooded area dimensions were collected. A storm period on the Sakhalin Island is almost the annual event in an autumn-winter season. The severe storm that happened in the southern Sakhalin region on November 15, 2019 led to flooding of the port territory in Korsakov. Due to the NAMI-DANCE computational complex, the storm surge was numerically simulated within the framework of the system of shallow water equations in the spherical coordinates on the rotating Earth with the regard for the friction force and the atmospheric effect. The calculations included the data on temporal and spatial distribution of the wind speed at the altitude 10 m taken from the Climate Forecast System Reanalysis database. The data on the atmospheric pressure were not applied in simulations since the atmosphere pressure gradient at the area under study was small. The simulation was carried out in the course of three days. The simulations showed that in 20 hours after the wind forcing had started, the water level in the port increased up to its maximum values, and did not fall the whole day. The water level maximum heights were concentrated in the southwestern part of the Aniva Bay. At that the calculated current speeds reached 2 m/s. During the storm, at the wind speed up to 15 m/s, the storm surge height in the Korsakov port area constituted 1.7 m, whereas the width of the flooded zone was up to 200 m. These results are confirmed well by the in situ measurement data. Conclusions. The simulation values of the power characteristics for the above-mentioned storm are represented in the paper. The Froude number square reaches 0.03 in the Korsakov city port area, and spatial distribution of the wave strength moment is up to 1 m3/s2. Field measurements and eyewitness reports confirm the evidence of a powerful impact of a storm surge upon the port constructions.


Sign in / Sign up

Export Citation Format

Share Document