scholarly journals Control strategies for combining local energy storage with wells turbine oscillating water column devices

2015 ◽  
Vol 83 ◽  
pp. 1097-1109 ◽  
Author(s):  
Salvador Ceballos ◽  
Judy Rea ◽  
Eider Robles ◽  
Iraide Lopez ◽  
Josep Pou ◽  
...  
Author(s):  
Fares M’zoughi ◽  
Soufiene Bouallègue ◽  
Aitor J Garrido ◽  
Izaskun Garrido ◽  
Mounir Ayadi

The stalling behavior is a feature of the Wells turbine that limits the generated output power of power plants using this turbine. The NEREIDA wave power plant installed in the harbor of Mutriku in the northern Spanish shoreline constitutes an excellent example of this phenomenon. This article deals with the modeling, simulation and control of an oscillating water column unit within the NEREIDA wave power plant. The stalling behavior is investigated and two control strategies are proposed to avoid it. The first control approach is the airflow control which aims to adjust the airflow in the turbine duct using a proportional–integral–derivative controller tuned with the water cycle algorithm. The second control approach is the rotational speed control adjusting the rotor speed using the rotor-side converter of the back-to-back converter which is wired to the doubly fed induction generator. Results of comparative studies show a power generation improvement even relative to the real measured data.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Erlantz Otaola ◽  
Aitor J. Garrido ◽  
Jon Lekube ◽  
Izaskun Garrido

Oscillating Water Column (OWC) based devices are arising as one of the most promising technologies for wave energy harnessing. However, the most widely used turbine comprising its power take-off (PTO) module, the Wells turbine, presents some drawbacks that require special attention. Notwithstanding different control strategies are being followed to overcome these issues; the use of other self-rectifying turbines could directly achieve this goal at the expense of some extra construction, maintenance, and operation costs. However, these newly developed turbines in turn show diverse behaviours that should be compared for each case. This paper aims to analyse this comparison for the Mutriku wave energy power plant.


2021 ◽  
Vol 2053 (1) ◽  
pp. 012013
Author(s):  
N. Abdul Settar ◽  
S. Sarip ◽  
H.M. Kaidi

Abstract Wells turbine is an important component in the oscillating water column (OWC) system. Thus, many researchers tend to improve the performance via experiment or computational fluid dynamics (CFD) simulation, which is cheaper. As the CFD method becomes more popular, the lack of evidence to support the parameters used during the CFD simulation becomes a big issue. This paper aims to review the CFD models applied to the Wells turbine for the OWC system. Journal papers from the past ten years were summarized in brief critique. As a summary, the FLUENT and CFX software are mostly used to simulate the Wells turbine flow problems while SST k-ω turbulence model is the widely used model. A grid independence test is essential when doing CFD simulation. In conclusion, this review paper can show the research gap for CFD simulation and can reduce the time in selecting suitable parameters when involving simulation in the Wells turbine.


2021 ◽  
pp. 53-62
Author(s):  
Mohamed Ali Jemni ◽  
Hamdi Hentati ◽  
Sawsan Elmbarki ◽  
Mohamed Salah Abid

2013 ◽  
Vol 28 (3) ◽  
pp. 553-564 ◽  
Author(s):  
Salvador Ceballos ◽  
Judy Rea ◽  
Iraide Lopez ◽  
Josep Pou ◽  
Eider Robles ◽  
...  

Author(s):  
Spyros A. Mavrakos ◽  
Dimitrios N. Konispoliatis

A floating oscillating water column device (OWC) consists of a vertical cylinder, with a finite wall thickness, partly submerged as an open-bottom chamber in which air is trapped above the inner water free surface. The chamber is connected with the outer atmosphere by a duct housing an air turbine. Forced by incident waves from any direction, the water surface inside pushes the dry air above through a Wells turbine system to generate power. In the present contribution the volume flows, the wave forces, the added mass and damping coefficients and the mean second-order loads for various configurations of OWC devices are being presented. Finally, it is tested how differentiations in the device’s geometry (wall thickness, draught, shape of the chamber, turbine characterises) affect the inner pressure and as a result the absorbed power by the device.


2020 ◽  
Vol 10 (13) ◽  
pp. 4628 ◽  
Author(s):  
Fares M’zoughi ◽  
Izaskun Garrido ◽  
Aitor J. Garrido ◽  
Manuel De La Sen

The Harmony Search algorithm has attracted a lot of interest in the past years because of its simplicity and efficiency. This led many scientists to develop various variants for many applications. In this paper, four variants of the Harmony search algorithm were implemented and tested to optimize the control design of the Proportional-Integral-derivative (PID) controller in a proposed airflow control scheme. The airflow control strategy has been proposed to deal with the undesired stalling phenomenon of the Wells turbine in an Oscillating Water Column (OWC). To showcase the effectiveness of the Self-Adaptive Global Harmony Search (SGHS) algorithm over traditional tuning methods, a comparative study has been carried out between the optimized PID, the traditionally tuned PID and the uncontrolled OWC system. The results of optimization showed that the Self-Adaptive Global Harmony Search (SGHS) algorithm adapted the best to the problem of the airflow control within the wave energy converter. Moreover, the OWC performance is superior when using the SGHS-tuned PID.


Author(s):  
R Curran ◽  
T P Stewart ◽  
T J T Whittaker

The matching of a Wells air turbine to an oscillating water column (OWC) is addressed, with particular reference to design synthesis at the Islay prototype wave power converter. The level of damping applied by the turbine must optimize the hydraulic performance of the OWC in order to facilitate efficient conversion from wave power to pneumatic power. Furthermore, a Wells turbine is only able to convert pneumatic power to mechanical power over a limited range of flow coefficients. Therefore, the efficient operational range of the turbine must extend over a sufficient and optimal proportion of the range of flow coefficients generated by the OWC. Suitable analytical models that describe the behaviour of the system are presented and subsequently the wave conditions and conversion performance at the Islay plant are outlined in order to exemplify the design synthesis to be achieved.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1278 ◽  
Author(s):  
Gimara Rajapakse ◽  
Shantha Jayasinghe ◽  
Alan Fleming

Oscillating water column wave energy converter arrays can be arranged to enhance the energy production and quality of power delivered to the grid. This study investigates four different array configurations of vented oscillating water columns and their effect on power quality and capacity of the energy storage systems required to absorb power fluctuation. Configuring the array of vented oscillating water columns as a nearshore detached breakwater allows combining the benefits of their complementary features. This increases the economic optimization of wave energy converters, paving the path to the energy market. The operations of the integration schemes are evaluated using the results obtained from simulations carried out using MATLAB/Simulink software. Simulation results show that the array of vented oscillating water columns and array of vented oscillating water columns as nearshore detached breakwater configurations increase the quality of power delivered to the grid and reduce the capacity of the energy storage systems required.


Sign in / Sign up

Export Citation Format

Share Document